Qwen2.5简要全流程以及Q&A

1 输入prompt 得到input id

input id: [B,L] # batch size , lenth

2 embeding之后得到 input_embeds: [B,L,D] # demensions

3 进入Transformer层

先通过linear层得到shape不变的 QKV

多头注意力 分割Dimension , kv变成 [B,H,L,head_dim] h是head,head_dim * head = Dimension

(如果有kvcache的话):

new key [B, H, 1 head_dim]

past key [B,H,L_prev,dim]

concat:[B,H,L_prev+1,dim]

Attn输出 [B,L,D]

outputs = self.transformer(input_ids, ...)

final_hidden_states = outputs[0] # shape: [B, L, D]

logits = self.lm_head(final_hidden_states) # shape: [B, L, vocab_size]

self.transformer 是由多层 Qwen2Block(带 attention + feedforward)堆叠组成,每层更新一次 hidden state。最终最后一层输出的 hidden state 就是 final_hidden_states。

logits = lm_head(final_hidden_states)

→ [B, L, vocab_size]

(值是每个位置对每个词的预测得分)

遇到到是哪个token_id之后 用tokenizer.decode()得到最终的词

lm_head是什么

语言建模头(Language Modeling Head)

一个线性层,将输出的hidden_states映射到词表维度

vocab_size = 151936, hidden_size = 4096

self.lm_head = nn.Linear(4096, 151936, bias=False)

得到logits之后还有一个sampling的过程

greedy sampling 直接取最大值

next_token = ops.argmax(next_token_logits, axis=-1) # [B]

Top-k / Top-p Sampling:

用 softmax 得到概率

probs = ops.softmax(next_token_logits, axis=-1) # [B, vocab_size]

根据策略采样

next_token = sample_from(probs, top_k=50, top_p=0.95, temperature=1.0)

top_k 取前k个概率大的

top_p 累积概率小于0.95

相关推荐
小拇指~2 小时前
神经网络的基础
人工智能·深度学习·神经网络
一碗白开水一4 小时前
【YOLO系列】YOLOv12详解:模型结构、损失函数、训练方法及代码实现
人工智能·深度学习·yolo·计算机视觉
CoovallyAIHub5 小时前
轻量?智能?协同?你选的标注工具,到底有没有帮你提效?
深度学习·算法·计算机视觉
zzywxc7875 小时前
PyTorch分布式训练:从入门到精通
前端·javascript·人工智能·深度学习·react.js·技术栈深潜计划
Virgil1395 小时前
【DL学习笔记】各种卷积操作总结(深度可分离、空洞、转置、可变形)
笔记·深度学习·学习
爱嘤嘤的小猪仔5 小时前
Deep learning based descriptor
人工智能·深度学习
都叫我大帅哥6 小时前
RNN:当神经网络有了记忆,却得了健忘症
python·深度学习
这张生成的图像能检测吗7 小时前
(论文速读)RMT:Retentive+ViT的视觉新骨干
人工智能·深度学习·计算机视觉·transformer·注意力机制
2zcode14 小时前
基于Matlab的深度学习智能行人检测与统计系统
人工智能·深度学习·目标跟踪
zzywxc78716 小时前
PyTorch分布式训练深度指南
人工智能·pytorch·分布式·深度学习·wpf·技术栈深潜计划