Qwen2.5简要全流程以及Q&A

1 输入prompt 得到input id

input id: [B,L] # batch size , lenth

2 embeding之后得到 input_embeds: [B,L,D] # demensions

3 进入Transformer层

先通过linear层得到shape不变的 QKV

多头注意力 分割Dimension , kv变成 [B,H,L,head_dim] h是head,head_dim * head = Dimension

(如果有kvcache的话):

new key [B, H, 1 head_dim]

past key [B,H,L_prev,dim]

concat:[B,H,L_prev+1,dim]

Attn输出 [B,L,D]

outputs = self.transformer(input_ids, ...)

final_hidden_states = outputs[0] # shape: [B, L, D]

logits = self.lm_head(final_hidden_states) # shape: [B, L, vocab_size]

self.transformer 是由多层 Qwen2Block(带 attention + feedforward)堆叠组成,每层更新一次 hidden state。最终最后一层输出的 hidden state 就是 final_hidden_states。

logits = lm_head(final_hidden_states)

→ [B, L, vocab_size]

(值是每个位置对每个词的预测得分)

遇到到是哪个token_id之后 用tokenizer.decode()得到最终的词

lm_head是什么

语言建模头(Language Modeling Head)

一个线性层,将输出的hidden_states映射到词表维度

vocab_size = 151936, hidden_size = 4096

self.lm_head = nn.Linear(4096, 151936, bias=False)

得到logits之后还有一个sampling的过程

greedy sampling 直接取最大值

next_token = ops.argmax(next_token_logits, axis=-1) # [B]

Top-k / Top-p Sampling:

用 softmax 得到概率

probs = ops.softmax(next_token_logits, axis=-1) # [B, vocab_size]

根据策略采样

next_token = sample_from(probs, top_k=50, top_p=0.95, temperature=1.0)

top_k 取前k个概率大的

top_p 累积概率小于0.95

相关推荐
weixin_3954489141 分钟前
排查流程啊啊啊
人工智能·深度学习·机器学习
DN20201 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu1 小时前
【大模型教程——第二部分:Transformer架构揭秘】第2章:模型家族谱系:从编码器到解码器 (Model Architectures)
深度学习·架构·transformer
deephub2 小时前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
飞鹰512 小时前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer
工程师老罗2 小时前
Pytorch如何验证模型?
人工智能·pytorch·深度学习
zhangfeng11332 小时前
Ollama 支持模型微调但是不支持词库,支持RAG,go语言开发的大模型的推理应用,
人工智能·深度学习·golang
m0_603888712 小时前
FineInstructions Scaling Synthetic Instructions to Pre-Training Scale
人工智能·深度学习·机器学习·ai·论文速览
EmmaXLZHONG3 小时前
Reinforce Learning Concept Flow Chart (强化学习概念流程图)
人工智能·深度学习·机器学习·流程图
薛定谔的猫19823 小时前
十三.调用 BERT 中文文本情感分析交互式推理模型训练好的
人工智能·深度学习·bert