Qwen2.5简要全流程以及Q&A

1 输入prompt 得到input id

input id: [B,L] # batch size , lenth

2 embeding之后得到 input_embeds: [B,L,D] # demensions

3 进入Transformer层

先通过linear层得到shape不变的 QKV

多头注意力 分割Dimension , kv变成 [B,H,L,head_dim] h是head,head_dim * head = Dimension

(如果有kvcache的话):

new key [B, H, 1 head_dim]

past key [B,H,L_prev,dim]

concat:[B,H,L_prev+1,dim]

Attn输出 [B,L,D]

outputs = self.transformer(input_ids, ...)

final_hidden_states = outputs[0] # shape: [B, L, D]

logits = self.lm_head(final_hidden_states) # shape: [B, L, vocab_size]

self.transformer 是由多层 Qwen2Block(带 attention + feedforward)堆叠组成,每层更新一次 hidden state。最终最后一层输出的 hidden state 就是 final_hidden_states。

logits = lm_head(final_hidden_states)

→ [B, L, vocab_size]

(值是每个位置对每个词的预测得分)

遇到到是哪个token_id之后 用tokenizer.decode()得到最终的词

lm_head是什么

语言建模头(Language Modeling Head)

一个线性层,将输出的hidden_states映射到词表维度

vocab_size = 151936, hidden_size = 4096

self.lm_head = nn.Linear(4096, 151936, bias=False)

得到logits之后还有一个sampling的过程

greedy sampling 直接取最大值

next_token = ops.argmax(next_token_logits, axis=-1) # [B]

Top-k / Top-p Sampling:

用 softmax 得到概率

probs = ops.softmax(next_token_logits, axis=-1) # [B, vocab_size]

根据策略采样

next_token = sample_from(probs, top_k=50, top_p=0.95, temperature=1.0)

top_k 取前k个概率大的

top_p 累积概率小于0.95

相关推荐
carpell2 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
云之渺2 小时前
数学十三
深度学习
ahead~2 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
小天才才3 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
l木本I3 小时前
大模型低秩微调技术 LoRA 深度解析与实践
python·深度学习·自然语言处理·lstm·transformer
顽强卖力4 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
要努力啊啊啊4 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
wufeil5 小时前
基于功能基团的3D分子生成扩散模型 - D3FG 评测
深度学习·分子生成·药物设计·ai辅助药物设计·计算机辅助药物设计
Andrew_Xzw5 小时前
数据结构与算法(快速基础C++版)
开发语言·数据结构·c++·python·深度学习·算法
deephub17 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化