Spark-streaming核心编程

1. 导入依赖 ‌:

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>

<version>3.0.0</version>

</dependency>

2.编写代码 ‌:

创建SparkConf和StreamingContext。

定义Kafka相关参数,如bootstrap servers、group id、key和value的deserializer。

使用KafkaUtils.createDirectStream方法创建DStream,该方法接受StreamingContext、位置策略、消费者策略等参数。

提取数据中的value部分,并进行word count计算。

启动StreamingContext并等待其终止。

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.{DStream, InputDStream}

import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

object DirectAPI {

def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")

val ssc = new StreamingContext(sparkConf,Seconds(3))

//定义kafka相关参数

val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG

->"node01:9092,node02:9092,node03:9092",

ConsumerConfig.GROUP_ID_CONFIG->"kafka",

"key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",

"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"

)

//通过读取kafka数据,创建DStream

val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](

ssc,LocationStrategies.PreferConsistent,

ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)

)

//提取出数据中的value部分

val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

//wordCount计算逻辑

valueDStream.flatMap(_.split(" "))

.map((_,1))

.reduceByKey(+)

.print()

ssc.start()

ssc.awaitTermination()

}

}

3.运行程序 ‌:

开启Kafka集群。

4.使用Kafka生产者产生数据。

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

5、运行Spark Streaming程序,接收Kafka生产的数据并进行处理。

6.查看消费进度 ‌:

使用Kafka提供的kafka-consumer-groups.sh脚本查看消费组的消费进度。

相关推荐
鸿乃江边鸟1 小时前
Flink中的 BinaryRowData 以及大小端
大数据·sql·flink
MicroTech20251 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
b***25112 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
Flink_China2 小时前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
大数据·flink
jiedaodezhuti3 小时前
Flink Checkpoint失败问题分析与解决方案
大数据·flink
海豚调度4 小时前
(二)一文读懂数仓设计的核心规范:从层次、类型到生命周期
大数据·数仓·技术规范
在未来等你4 小时前
Elasticsearch面试精讲 Day 15:索引别名与零停机更新
大数据·分布式·elasticsearch·搜索引擎·面试
IT研究室5 小时前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
XueminXu5 小时前
Spark提交任务的资源配置和优化
spark·并行度·spark-submit·driver-memory·num-executors·executor-memory·executor-cores
Lx3525 小时前
YARN资源调度优化:最大化集群利用率
大数据·hadoop