Spark-streaming核心编程

1. 导入依赖 ‌:

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>

<version>3.0.0</version>

</dependency>

2.编写代码 ‌:

创建SparkConf和StreamingContext。

定义Kafka相关参数,如bootstrap servers、group id、key和value的deserializer。

使用KafkaUtils.createDirectStream方法创建DStream,该方法接受StreamingContext、位置策略、消费者策略等参数。

提取数据中的value部分,并进行word count计算。

启动StreamingContext并等待其终止。

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.{DStream, InputDStream}

import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

object DirectAPI {

def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")

val ssc = new StreamingContext(sparkConf,Seconds(3))

//定义kafka相关参数

val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG

->"node01:9092,node02:9092,node03:9092",

ConsumerConfig.GROUP_ID_CONFIG->"kafka",

"key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",

"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"

)

//通过读取kafka数据,创建DStream

val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](

ssc,LocationStrategies.PreferConsistent,

ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)

)

//提取出数据中的value部分

val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

//wordCount计算逻辑

valueDStream.flatMap(_.split(" "))

.map((_,1))

.reduceByKey(+)

.print()

ssc.start()

ssc.awaitTermination()

}

}

3.运行程序 ‌:

开启Kafka集群。

4.使用Kafka生产者产生数据。

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

5、运行Spark Streaming程序,接收Kafka生产的数据并进行处理。

6.查看消费进度 ‌:

使用Kafka提供的kafka-consumer-groups.sh脚本查看消费组的消费进度。

相关推荐
Leo.yuan24 分钟前
数据仓库是什么?数据仓库架构有哪些?
大数据·数据库·数据仓库·架构·数据分析
Faith_xzc24 分钟前
Hive 数据同步到 Doris 最佳实践方案:从场景适配到性能调优全解析
大数据·数据仓库·hive·hadoop·doris
MonkeyKing_sunyuhua39 分钟前
4.4 记忆机制与上下文管理:短期与长期记忆的设计与应用
大数据·人工智能·agent
MaYuKang1 小时前
「ES数据迁移可视化工具(Python实现)」支持7.x索引数据互传
大数据·数据库·python·mysql·elasticsearch
企鹅不耐热.2 小时前
Spark-Streaming核心编程
大数据·分布式·spark
人大博士的交易之路3 小时前
龙虎榜——20250422
大数据·数学建模·数据挖掘·缠论·缠中说禅·涨停回马枪·龙虎榜
不要天天开心3 小时前
深入探索Spark-Streaming:从Kafka数据源创建DStream
spark
TDengine (老段)3 小时前
TDengine 流计算引擎设计
大数据·数据库·物联网·flink·时序数据库·tdengine·涛思数据
全栈开发圈3 小时前
新书速览|Hadoop与Spark大数据全景解析(视频教学版)
大数据·hadoop·spark
ShAn DiAn4 小时前
实时步数统计系统 kafka + spark +redis
大数据·redis·分布式·spark·kafka