2.1 CIFAR-10数据集简介
CIFAR-10数据集包含10个类别:plane、car、bird、cat、deer、dog、frog、horse、ship、truck,每个类别有6000张图片。其中训练集图片有50000张,测试集有10000张图片。训练集和测试集的生成方法是,分别从每个类别中随机挑选1000张图片加入测试集,其余图片进入训练集。CIFAR-10中的图像尺寸为332
32,也就是RGB的3层颜色通道,图像的宽和高都为32。
2.2 加载数据集
加载数据集,数据进行归一化操作
python
import torch
import torch.utils
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True,transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
展示一些训练图片,代码如下:
python
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0)))
plt.show()
dataiter = iter(trainloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print(''.join('%6s' % classes[labels[j]] for j in range(4)))
输出结果:
python
deer plane deer cat

2.3定义卷积神经网络
python
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#输入图片为三通道,输出为六通道,卷积核大小为5*5
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return x
net = Net()
print(net)
输出网络结构:
python
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
2.4 定义损失函数和优化器
使用分类交叉熵(CrossEntropy)作为损失函数,支持动量的SGD作为优化器,代码如下:
python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
动量设置为0.9。
2.5 训练网络
只需要在数据迭代器上循环传给网络和优化器的输入即可,代码如下:
python
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
#获取输入
inputs, labels = data
#清零权重的梯度
optimizer.zero_grad()
#前向传播 计算损失 反向传播 更新参数
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
#打印统计信息
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1,running_loss / 2000))
running_loss = 0.0
print('Finished Training')
输出结果如下:
python
[1, 2000] loss: 2.695
[1, 4000] loss: 2.166
[1, 6000] loss: 2.026
[1, 8000] loss: 1.646
[1, 10000] loss: 1.483
[1, 12000] loss: 1.440
[2, 2000] loss: 1.327
[2, 4000] loss: 1.345
[2, 6000] loss: 1.326
[2, 8000] loss: 1.295
[2, 10000] loss: 1.239
[2, 12000] loss: 1.232
Finished Training
2.6使用测试集评估
从测试集选取一些图片,来用训练好的网络来进行预测,代码如下:

python
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth', ''.join('%6s' % classes[labels[j]] for j in range(4)))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ',' '.join('%6s' % classes[predicted[j]] for j in range(4)))
输出结果如下:
python
GroundTruth cat ship ship plane
Predicted: cat ship ship ship
接下来对测试集的每一张图片都进行预测,并计算整体的准确率,代码如下:
python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
输出结果如下:
python
Accuracy of the network on the 10000 test images: 56 %
为了精细化分析,查看每一个类别的准确率。代码如下:
python
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
输出结果如下:
python
Accuracy of plane : 41 %
Accuracy of car : 81 %
Accuracy of bird : 27 %
Accuracy of cat : 41 %
Accuracy of deer : 61 %
Accuracy of dog : 46 %
Accuracy of frog : 73 %
Accuracy of horse : 59 %
Accuracy of ship : 75 %
Accuracy of truck : 58 %
如果想提高准确率,可以多训练几个epoch。