spark和hadoop的区别与联系

区别

计算模式 :

Hadoop :基于 MapReduce 模型,数据处理依赖磁盘读写,任务分为 Map 和 Reduce 两个阶段,中间结果需写入磁盘,磁盘 I/O 成为性能瓶颈。

Spark :采用内存计算,将数据存储在内存中,减少了磁盘读写开销,中间结果在内存中直接传递和处理,大大提高了计算速度。

性能表现 :

Hadoop :更适合大规模数据的批处理任务,在处理实时数据、迭代计算等场景下,性能欠佳。其性能受磁盘 I/O 限制,处理速度相对较慢。

Spark :在迭代计算如机器学习、图计算等场景中性能优势明显,处理速度比特快,一般认为其内存计算速度比 Hadoop 的 MapReduce 快 100~1000 倍左右。

实时处理能力 :

Hadoop :本身不适合实时数据处理,主要面向离线批处理。

Spark :提供了 Spark Streaming,可实现近实时的数据流处理,能高效处理实时数据。

编程模型与易用性 :

Hadoop :编程模型相对复杂,开发人员需熟悉分布式计算概念,编写 MapReduce 代码门槛较高。

Spark :提供了丰富且简洁的 API,支持 Java、Scala、Python 和 R 等多种语言,编程模型更直观,易学易用,受到数据科学家和开发者青睐。

资源管理与调度 :

Hadoop :使用 YARN 作为资源管理和作业调度器。

Spark :内置 Spark Standalone 资源管理和调度器,也可与 YARN、Mesos 等集成使用。

生态系统与组件 :

Hadoop :生态系统庞大,包含 HDFS、MapReduce、Hive、Pig、HBase 等组件,构成了完整的分布式计算和存储体系。

Spark :拥有包括 Spark SQL、Spark Streaming、MLlib、GraphX 等在内的完整生态系统,可处理多种数据和应用场景。

联系

数据存储 :Spark 可以读取存储在 Hadoop 的 HDFS 中的数据进行计算,计算结果也能存储回 HDFS。HDFS 为 Spark 提供了高可靠、高可用的海量数据存储能力。

资源管理 :Spark 可以运行在 Hadoop 的 YARN 资源管理器上,YARN 能统一管理集群资源,为 Spark 和 Hadoop MapReduce 等应用程序分配计算资源,提高集群资源利用率。

功能互补 :在实际应用中,二者常结合使用。Hadoop 负责大规模数据的批处理和离线存储,Spark 则利用其内存计算优势,处理实时数据流、进行交互式查询和复杂的机器学习、图计算等任务。

相关推荐
大厂技术总监下海10 小时前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?
大数据·数据库·算法·apache
新诺韦尔API12 小时前
手机三要素验证不通过的原因?
大数据·智能手机·api
成长之路51413 小时前
【数据集】分地市全社会用电量统计数据(2004-2022年)
大数据
InfiSight智睿视界13 小时前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Python_Study202514 小时前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构
Cx330❀14 小时前
Git 多人协作全攻略:从入门到高效协同
大数据·elasticsearch·搜索引擎·gitee·github·全文检索·gitcode
Tob管理笔记15 小时前
建筑业如何精准开拓优质客户?技术驱动下的方法论与实践
大数据·云计算·数据库开发
MM_MS15 小时前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
JZC_xiaozhong15 小时前
主数据同步失效引发的业务风险与集成架构治理
大数据·架构·数据一致性·mdm·主数据管理·数据孤岛解决方案·数据集成与应用集成
T062051416 小时前
【数据集】全国各地区教育139个相关指标数据集(2000-2024年)
大数据