Spark-SQL与Hive

Spark-SQL与Hive的那些事儿:从连接到数据处理

  • 在大数据处理领域,Spark-SQL和Hive都是非常重要的工具。今天咱们就来聊聊它们之间的关系,以及怎么用Spark-SQL去连接Hive进行数据处理。
  • 先说说Hive,它是Hadoop上的SQL引擎,能让我们用类似SQL的语法来处理存储在Hadoop分布式文件系统(HDFS)中的数据。而Spark-SQL呢,是Spark提供的用来处理结构化数据的模块,它支持SQL查询、DataFrame操作等。当Spark-SQL和Hive结合起来,能大大提升数据处理的效率和灵活性。
  • Spark-SQL连接Hive有好几种方式。第一种是内嵌Hive,这种方式虽然简单,直接就能用,但在实际生产中很少有人用。因为它有一些局限性,比如性能可能不够好,也不太方便扩展。
  • 第二种是连接外部Hive。这在实际项目里用得比较多。具体怎么做呢?首先得把Hive的配置文件hive-site.xml拷贝到Spark的conf/目录下,而且要把里面连接数据库地址中的localhost改成实际的服务器地址,像node01。接着把MySQL的驱动拷贝到Spark的jars/目录下,再把core-site.xml和hdfs-site.xml也拷贝到conf/目录下,最后重启spark-shell,这样就能连接上外部Hive啦。
  • 还有运行Spark beeline和Spark-SQL CLI这两种方式。Spark beeline是基于HiveServer2实现的Thrift服务,能让我们用hive的beeline工具来访问Spark Thrift Server执行SQL语句。Spark-SQL CLI则可以在本地轻松运行Hive元数据服务,从命令行就能执行查询任务,操作起来和Hive窗口差不多。
  • 如果想用代码操作Hive,也不难。先在项目里导入相关依赖,像spark-hive_2.12和hive-exec这两个包。然后把hive-site.xml文件拷贝到项目的resources目录中。最后在代码里创建SparkSession并启用Hive支持,就可以写SQL语句来操作Hive里的数据了。比如创建数据库、查询数据等。不过在这个过程中可能会遇到权限问题,要是出现"Permission denied"这样的错误,在代码开头加上一句System.setProperty("HADOOP_USER_NAME", "你的hadoop用户名")就能解决。
  • 最后给大家分享一个有趣的小案例。假设我们有一份用户数据,存放在Hive表中,现在想统计有效数据条数及用户数量最多的前二十个地址。这时候就可以用Spark-SQL连接Hive,先把数据读取出来,利用get_json_object函数转换格式,再进行后续的分析处理。这样就能快速得到我们想要的结果啦。
  • 希望通过这篇博客,大家对Spark-SQL连接Hive有更清楚的了解,在以后的学习和工作中能灵活运用它们处理数据!
相关推荐
tq10866 小时前
先探索,后设计
笔记
hnult7 小时前
2026 在线培训考试系统选型指南:核心功能拆解与选型逻辑
人工智能·笔记·课程设计
AI视觉网奇7 小时前
ue 角色驱动衣服 绑定衣服
笔记·学习·ue5
三水不滴7 小时前
计网ping原理
经验分享·笔记·计算机网络
prog_61038 小时前
【笔记】思路分享:各种大模型免费当agent后台
笔记·大语言模型·agent·cursor
凯尔萨厮8 小时前
Maven(Windows下载安装)
笔记·maven
wdfk_prog8 小时前
[Linux]学习笔记系列 -- [drivers][input]serio
linux·笔记·学习
菩提小狗9 小时前
小迪安全2023-2024|第5天:基础入门-反弹SHELL&不回显带外&正反向连接&防火墙出入站&文件下载_笔记|web安全|渗透测试|
笔记·安全·web安全
Wentao Sun9 小时前
致敬软件创业者2026
笔记·程序人生
深蓝海拓10 小时前
PySide6,QCoreApplication::aboutToQuit与QtQore.qAddPostRoutine:退出前后的清理工作
笔记·python·qt·学习·pyqt