【漫话机器学习系列】226.测试集、训练集、验证集(test,training,validation sets)

【深度学习入门】训练集、验证集和测试集详解

在进行机器学习或深度学习项目时,正确理解和划分训练集(Training Set)、验证集(Validation Set)、测试集(Test Set)是至关重要的。今天,我们通过一张直观易懂的图(感谢 Chris Albon 的精彩总结),详细解释它们各自的作用及在实际应用中的意义。


一、训练集(Training Set)

用于寻找最小损失的权重的数据

训练集是模型学习的主要数据来源。我们通过输入训练集数据,不断地调整模型参数(如神经网络中的权重和偏置),以最小化损失函数。可以理解为:模型在这一阶段"看见"的数据,是它掌握规律、学会做出预测的基础。

特点总结:

  • 数据量通常最大。
  • 用来更新模型的内部参数。
  • 通常伴随反向传播(Backpropagation)和优化器(如SGD、Adam)进行迭代更新。

示例: 如果我们训练一个猫狗分类器,那么成千上万张标注为"猫"或"狗"的图片,就属于训练集。


二、验证集(Validation Set)

用于调优学习算法的超参数的数据

验证集的作用是帮助我们在训练过程中评估模型性能,以便于调整超参数。超参数指的是那些不能通过训练数据自动学习得到的参数,比如:

  • 学习率(Learning Rate)
  • 批大小(Batch Size)
  • 网络层数
  • Dropout比例

通过在验证集上的表现,我们可以知道是否出现了过拟合 (overfitting)或欠拟合(underfitting)现象,从而调整模型结构或训练策略。

特点总结:

  • 参与模型调优,但不直接用于训练。
  • 用来做早停(Early Stopping)、模型选择(Model Selection)等。

示例: 继续以上的猫狗分类器,假设我们有5000张未参与训练的图片,每次训练几个epoch后,就用这5000张图片来评估当前模型性能。


三、测试集(Test Set)

用于评估模型普适性(泛化性)的数据

测试集是模型最终评估的标准。它完全不参与模型的训练或调参过程,仅用于检验最终模型的实际性能。一个模型在测试集上的表现,反映了它在真实世界数据上的泛化能力。

特点总结:

  • 在训练和验证阶段不可见。
  • 只用于最终性能评估,生成报告或发布结果。
  • 通常用来生成准确率(Accuracy)、召回率(Recall)、F1分数等指标。

示例: 猫狗分类器在开发完成后,我们拿出一组全新的、模型从未见过的图片,让模型分类,并计算准确率,这就是使用测试集的过程。


四、三者之间的关系

可以用一句话总结它们的角色:

  • 训练集:教模型怎么做。
  • 验证集:帮助调整模型做得更好。
  • 测试集:检验模型到底能不能胜任任务。

在实际操作中,数据通常会按比例拆分,例如 8:1:1(训练集:验证集:测试集),也可能根据具体需求动态调整。


五、常见误区提醒

  • 验证集绝不是测试集
    验证集参与模型优化,而测试集是在模型确定后才使用。
  • 过拟合风险
    如果频繁在验证集上调整超参数,最终也会对验证集产生过拟合,因此有时候还需要再额外设置一个独立的测试集。
  • 数据泄漏(Data Leakage)
    如果测试集数据提前泄露到训练过程中,模型评估就失去了意义,要严格保证数据划分的隔离性。

六、总结

在机器学习或深度学习中,合理划分和使用训练集、验证集与测试集,是保证模型开发科学性和最终效果的基石。尤其在大模型训练和工业应用中,一个细小的划分失误,就可能导致模型上线后性能大幅下降。

希望通过这篇图文并茂的总结,能帮助你更加清晰、系统的理解!


如果你觉得这篇文章有帮助,欢迎点赞 👍、收藏 ⭐、评论交流!

后续我还会持续分享更多深度学习和机器学习的实战干货,敬请关注~

相关推荐
G皮T3 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼3 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间3 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享3 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾4 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码4 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5894 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien4 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松5 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_15 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf