图解LLM,入门大模型必看

9张图解LLM

✅ 1. Transformer vs. Mixture of Experts

  • Transformer 每个解码器块使用固定的前馈网络;
  • Mixture of Experts (MoE) 通过 Router 动态选择部分专家网络,提升模型容量同时减少计算量。

✅ 2. 5种微调大语言模型(LLM)的方法(LoRA系列)

  • LoRA:冻结原始参数,仅训练低秩矩阵 A 和 B;
  • LoRA-FA:输入侧也加入变换,更灵活;
  • VeRA:参数更少,训练共享向量 + 偏置;
  • Delta-LoRA:每层引入多个 LoRA 分支,增强表达;
  • LoRA+:在 B 矩阵上使用更大学习率,加快收敛。

✅ 3. Traditional RAG vs. Agentic RAG

  • 传统RAG:直接用 query 检索向量库,拼接上下文喂给 LLM;
  • Agentic RAG:引入 Agent,迭代重写问题、判断是否信息不足、是否需要用工具或检索源,流程更智能。

✅ 4. 5种 Agentic AI 设计模式

  1. Reflection:先生成再反思输出,迭代优化;
  2. Tool Use:调用外部工具补充信息;
  3. ReAct:推理 + 动作交替进行;
  4. Planning:先拆解任务,逐步执行;
  5. Multi-agent:多个 Agent 协作解决复杂问题。

✅ 5. 5种 RAG 文本切分策略(Chunking)

  1. Fixed-size:定长切分,简单易实现;
  2. Semantic:按语义相似性拼接;
  3. Recursive:大段内容递归再切分;
  4. 结构化切分:按文档结构如标题、章节切分;
  5. LLM生成切分:利用LLM智能划块。

✅ 6. 5级 Agentic AI 系统能力层级

  1. 基础回复者:只用 LLM 输出结果;
  2. Router 模式:路由器 LLM 选择最佳模型;
  3. 工具调用:LLM 能调用 API、数据库等外部资源;
  4. 多智能体:多个子 Agent 协同;
  5. 自主智能体:生成+验证器 Agent 形成闭环反馈优化。

✅ 7. Traditional RAG vs. HyDE

  • RAG:直接将 query 用作向量检索;
  • HyDE:先让 LLM 生成一段"假设文本",用该文本向量检索,提高相关性。

✅ 8. Traditional RAG vs. Graph RAG

  • RAG:依赖向量库检索相关文档;
  • Graph RAG:用 LLM 生成知识图谱(实体+关系),结合图数据库进行图遍历,获取结构化上下文。

✅ 9. KV Caching in LLMs

  • Insight 1:生成新 token 只需最后的 hidden state;
  • Insight 2:最后 hidden state 只依赖最后一个 query 向量和之前所有的 key/value 向量;
  • 结论:将 K/V 向量缓存起来,可避免重复计算,大幅提升推理效率。
相关推荐
淘源码d29 分钟前
什么是医院随访系统?成熟在用的智慧随访系统源码
java·spring boot·后端·开源·源码·随访系统·随访系统框架
Tigshop开源商城系统4 小时前
Tigshop 开源商城系统 php v5.1.9.1版本正式发布
java·大数据·开源·php·开源软件
博士僧小星9 小时前
环境配置|GPUStack——为大模型而生的开源GPU集群管理器
开源·大模型·gpu·gpustack
thubier(段新建)19 小时前
2025重新出发!中小物流仓配一体化平台的技术选型&建设手记
开源·城市配送
IT 小阿姨(数据库)19 小时前
PostgreSQL 之上的开源时序数据库 TimescaleDB 详解
运维·数据库·sql·postgresql·开源·centos·时序数据库
weixin_3776348419 小时前
【开源简历解析】SmartResume 0.6B模型实现96%准确率
开源·简历解析
商汤万象开发者1 天前
LazyLLM教程 | 第13讲:RAG+多模态:图片、表格通吃的问答系统
人工智能·科技·算法·开源·多模态
Coovally AI模型快速验证1 天前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源
小马爱打代码1 天前
实战:分布式开源监控Zabbix
分布式·开源·zabbix
weixin_511222801 天前
ymi 和 WowPacketParser 使用教程
开源