一、重采样
1.1 什么是重采样
所谓的重采样,就是改变⾳频的采样率、sample format
、声道数等参数,使之按照我们期望的参数输出。
1.2 为什么要重采样
为什么要重采样?
-
当然是原有的⾳频参数不满⾜我们的需求,⽐如在FFmpeg解码⾳频的时候,不同的⾳源有不同的格式,采样率等,在解码后的数据中的这些参数也会不⼀致(最新FFmpeg 解码⾳频后,⾳频格式为
AV_SAMPLE_FMT_FLTP
,这个参数应该是⼀致的),如果我们接下来需要使⽤解码后的⾳频数据做其他操作,⽽这些参数的不⼀致导致会有很多额外⼯作,此时直接对其进⾏重采样,获取我们制定的⾳频参数,这样就会⽅便很多。 -
再⽐如在将⾳频进⾏SDL播放时候,因为当前的SDL2.0不⽀持planar格式,也不⽀持浮点型的,⽽最新的FFMPEG 16年会将⾳频解码为AV_SAMPLE_FMT_FLTP格式,因此此时就需要我们对其重采样,使之可以在SDL2.0上进⾏播放。
1.3 可调节的参数
通过重采样,我们可以对:
- sample rate(采样率)
- sample format(采样格式)
- channel layout(通道布局,可以通过此参数获取声道数)
二、 对应参数解析
2.1 采样率
采样设备每秒抽取样本的次数
2.2 采样格式及量化精度(位宽)
每种⾳频格式有不同的量化精度(位宽),位数越多,表示值就越精确,声⾳表现⾃然就越精准。
FFMpeg中⾳频格式有以下⼏种,每种格式有其占⽤的字节数信息
c
enum AVSampleFormat {
AV_SAMPLE_FMT_NONE = -1,
AV_SAMPLE_FMT_U8, ///< unsigned 8 bits
AV_SAMPLE_FMT_S16, ///< signed 16 bits
AV_SAMPLE_FMT_S32, ///< signed 32 bits
AV_SAMPLE_FMT_FLT, ///< float
AV_SAMPLE_FMT_DBL, ///< double
AV_SAMPLE_FMT_U8P, ///< unsigned 8 bits, planar
AV_SAMPLE_FMT_S16P, ///< signed 16 bits, planar
AV_SAMPLE_FMT_S32P, ///< signed 32 bits, planar
AV_SAMPLE_FMT_FLTP, ///< float, planar
AV_SAMPLE_FMT_DBLP, ///< double, planar
AV_SAMPLE_FMT_S64, ///< signed 64 bits
AV_SAMPLE_FMT_S64P, ///< signed 64 bits, planar
AV_SAMPLE_FMT_NB ///< Number of sample formats. DO NOT USE if linking dynamically
};
2.3 分⽚(plane)和打包(packed)
-
以双声道为例,带P(
plane
)的数据格式在存储时,其左声道和右声道的数据是分开存储的,左声道的数据存储在data[0]
,右声道的数据存储在data[1]
,每个声道的所占⽤的字节数为linesize[0]
和linesize[1]
-
不带P(
packed
)的⾳频数据在存储时,是按照LRLRLR...的格式交替存储在data[0]
中,linesize[0]
表示总的数据量。
2.4 声道分布(channel_layout)
声道分布在FFmpeg\libavutil\channel_layout.h
中有定义,⼀般来说⽤的⽐较多的是AV_CH_LAYOUT_STEREO
(双声道)和AV_CH_LAYOUT_SURROUND
(三声道)
这两者的定义如下:
c
#define AV_CH_LAYOUT_STEREO (AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT)
#define AV_CH_LAYOUT_SURROUND (AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER)
2.5 ⾳频帧的数据量计算
- ⼀帧⾳频的数据量(字节)=
channel
数* nb_samples
样本数*
每个样本占⽤的字节数 - 如果该⾳频帧是FLTP格式的PCM数据,包含
1024
个样本,双声道,那么该⾳频帧包含的⾳频数据量是2*1024*4=8192
字节。 AV_SAMPLE_FMT_DBL : 2*1024*8 = 16384
2.6 ⾳频播放时间计算
-
以采样率44100Hz来计算,每秒44100个sample,⽽正常⼀帧为1024个sample,可知每帧播放时间
/1024=1000ms/44100
,得到每帧播放时间=1024*1000/44100=23.2ms
(更精确的是23.21995464852608
)。 -
⼀帧播放时间(毫秒) =
nb_samples
样本数*1000/
采样率 -
(1)
1024*1000/44100=23.21995464852608ms
->约等于23.2ms
,精度损失了0.011995464852608ms
,如果累计10
万帧,误差>1199
毫秒,如果有视频⼀起的就会有⾳视频同步的问题。 如果按着23.2
去计算pts
(0 23.2 46.4
)就会有累积误差。 -
(2)
1024*1000/48000=21.33333333333333ms
三、FFmpeg重采样API
分配⾳频重采样的上下⽂
c
struct SwrContext *swr_alloc(void)
当设置好相关的参数后,使⽤此函数来初始化SwrContext结构体
c
int swr_init(struct SwrContext *s);
分配SwrContext并设置/重置常⽤的参数。
c
struct SwrContext *swr_alloc_set_opts(struct SwrContext *s, // ⾳频重采样上下⽂
int64_t out_ch_layout, // 输出的layout, 如:5.1声道
enum AVSampleFormat out_sample_fmt, // 输出的采样格式。Float, S16,⼀般选⽤是s16 绝⼤部分声卡⽀持
int out_sample_rate, //输出采样率
int64_t in_ch_layout, // 输⼊的layout
enum AVSampleFormat in_sample_fmt, // 输⼊的采样格式
int in_sample_rate, // 输⼊的采样率
int log_offset, // ⽇志相关,不⽤管先,直接为0
void *log_ctx // ⽇志相关,不⽤管先,直接为NULL
);
将输⼊的⾳频按照定义的参数进⾏转换并输出
- 返回值
<= out_count
, in
和in_count
可以设置为0,以最后刷新最后⼏个样本。
c
int swr_convert(struct SwrContext *s, // ⾳频重采样的上下⽂
uint8_t **out, // 输出的指针。传递的输出的数组
int out_count, //输出的样本数量,不是字节数。单通道的样本数量。
const uint8_t **in , //输⼊的数组,AVFrame解码出来的DATA
int in_count // 输⼊的单通道的样本数量。
);
释放掉SwrContext
结构体并将此结构体置为NULL
c
void swr_free(struct SwrContext **s);
-
与lswr的交互是通过SwrContext完成的,SwrContext被分配给swr_alloc()或
swr_alloc_set_opts()。 它是不透明的,所以所有参数必须使⽤AVOptions API设置。
-
为了使⽤lswr,你需要做的第⼀件事就是分配SwrContext。 这可以使⽤swr_alloc()或swr_alloc_set_opts()来完成。 如果您使⽤前者,则必须通过AVOptions API设置选项。 后⼀个函数提供了相同的功能,但它允许您在同⼀语句中设置⼀些常⽤选项。
-
例如,以下代码将设置从平⾯浮动样本格式到交织的带符号16位整数的转换,从48kHz到44.1kHz的下采样,以及从5.1声道到⽴体声的下混合(使⽤默认混合矩阵)。 这是使⽤swr_alloc()函数。
c
SwrContext *swr = swr_alloc();
av_opt_set_channel_layout(swr, "in_channel_layout", AV_CH_LAYOUT_POINT1, 0);
av_opt_set_channel_layout(swr, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);
av_opt_set_int(swr, "in_sample_rate", 48000, 0);
av_opt_set_int(swr, "out_sample_rate", 44100, 0);
av_opt_set_sample_fmt(swr, "in_sample_fmt", AV_SAMPLE_FMT_FLTP, 0);
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
同样的⼯作也可以使⽤swr_alloc_set_opts():
c
SwrContext *swr = swr_alloc_set_opts(NULL, // we're allocating a new_context
AV_CH_LAYOUT_STEREO, // out_ch_layout
AV_SAMPLE_FMT_S16, // out_sample_fmt
44100, // out_sample_rate
AV_CH_LAYOUT_5POINT1, // in_ch_layout
AV_SAMPLE_FMT_FLTP, // in_sample_fmt
48000, // in_sample_rate
0, // log_offset
NULL); // log_ctx
-
⼀旦设置了所有值,它必须⽤swr_init()初始化。 如果需要更改转换参数,可以使⽤AVOptions来更改参数,如上⾯第⼀个例⼦所述; 或者使⽤swr_alloc_set_opts(),但是第⼀个参数是分配的上下⽂。 您必须再次调⽤swr_init()。
-
转换本身通过重复调⽤swr_convert()来完成。 请注意,如果提供的输出空间不⾜或采样率转换完成后,样本可能会在swr中缓冲,这需要"未来"样本。 可以随时通过使⽤swr_convert()(in_count可以设置为0)来检索不需要将来输⼊的样本。 在转换结束时,可以通过调⽤具有NULL in和in incount的swr_convert()来刷新重采样缓冲区。
实现流程
添加输出文件
在main
函数参数中加入输出文件,这里设置为out.pcm

打开输出文件
二进制写方式打开
c
FILE *dst_file;
dst_filename = argv[1];
dst_file = fopen(dst_filename, "wb");
设置输入参数和输出参数
- 这里的输入源是我们手动生成了,生成的是一个正弦波
- 手动设置一下输入源的参数信息
c
// 输入参数
int64_t src_ch_layout = AV_CH_LAYOUT_STEREO;
int src_rate = 48000;
enum AVSampleFormat src_sample_fmt = AV_SAMPLE_FMT_DBL;
int src_nb_channels = 0;
uint8_t **src_data = NULL; // 二级指针
int src_linesize;
int src_nb_samples = 1024;
- 设置输出参数,改变采样率和采样格式
c
// 输出参数
int64_t dst_ch_layout = AV_CH_LAYOUT_STEREO;
int dst_rate = 44100;
enum AVSampleFormat dst_sample_fmt = AV_SAMPLE_FMT_S16;
int dst_nb_channels = 0;
uint8_t **dst_data = NULL; //二级指针
int dst_linesize;
int dst_nb_samples;
int max_dst_nb_samples;
- 创建重采样上下文对象
- 分配重采样上下文内存
- 设置重采样参数
- 初始化重采样
c
struct SwrContext *swr_ctx;
swr_ctx = swr_alloc();
av_opt_set_int(swr_ctx, "in_channel_layout", src_ch_layout, 0);
av_opt_set_int(swr_ctx, "in_sample_rate", src_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", src_sample_fmt, 0);
/* initialize the resampling context */
if ((ret = swr_init(swr_ctx)) < 0) {
fprintf(stderr, "Failed to initialize the resampling context\n");
goto end;
}
- 需要根据通道格式获取通道的数量
c
src_nb_channels = av_get_channel_layout_nb_channels(src_ch_layout);
dst_nb_channels = av_get_channel_layout_nb_channels(dst_ch_layout);
- 根据输入(输出)参数(采样率、音频格式、通道数)分配内存
c
ret = av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_nb_channels,
src_nb_samples, src_sample_fmt, 0);
dst_nb_channels = av_get_channel_layout_nb_channels(dst_ch_layout);
// 分配输出缓存内存
ret = av_samples_alloc_array_and_samples(&dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 0);
- 根据输入的采样率和输入的采样点计算出输出文件的总采样数量
- 这里的采样点指的是一帧采样的总采样点,是循环进行这样每一帧的采样
AV_ROUND_UP
是上取整,因为存在小数
c
max_dst_nb_samples = dst_nb_samples =
av_rescale_rnd(src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
生成输入输出数据
- 生成输入源,因为输入格式使用的是
packet
模式的格式 - 每次生成数据计算时间
t
,我们只生成10s
数据
c
fill_samples((double *)src_data[0], src_nb_samples, src_nb_channels, src_rate, &t);
fill_samples
函数用于生成一个440Hz
频率的正弦波- 这里是打包模式,只有
src_data[0]
有数据,并且每个采样点依次输入到每个channel
中
c
static void fill_samples(double *dst, int nb_samples, int nb_channels, int sample_rate, double *t)
{
int i, j;
double tincr = 1.0 / sample_rate, *dstp = dst;
const double c = 2 * M_PI * 440.0;
/* generate sin tone with 440Hz frequency and duplicated channels */
for (i = 0; i < nb_samples; i++) {
*dstp =sin(c * *t);
for (j = 1; j < nb_channels; j++)
dstp[j] = dstp[0];
dstp += nb_channels;
*t += tincr;
}
}
计算采样点偏差
- 由于我们转换后的采样点不能整除,因此会在重采样器中缓存一部分采样点
- 我们就需要动态拿出这个缓存的采样点,如果采样点大于之前的最大采样点,那么我就需要重新分配输出样本的内存,并且重新设置最大采样点
c
int64_t delay = swr_get_delay(swr_ctx, src_rate);
dst_nb_samples = av_rescale_rnd(delay + src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
if (dst_nb_samples > max_dst_nb_samples) {
av_freep(&dst_data[0]);
ret = av_samples_alloc(dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 1);
if (ret < 0)
break;
max_dst_nb_samples = dst_nb_samples;
重采样转换
- 根据输入输出的样本数将输入数据重采样转换到输出数据
c
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
写入文件
- 获取
dst
数据的大小,要根据通道数、音频格式,以及linesize
来推断 - 获取数据大小后,写入相应大小的数据到文件
c
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
整体转换代码
- 整体转换的代码如下,只重采样
10s
的数据
c
t = 0;
do {
/* generate synthetic audio */
// 生成输入源
fill_samples((double *)src_data[0], src_nb_samples, src_nb_channels, src_rate, &t);
/* compute destination number of samples */
int64_t delay = swr_get_delay(swr_ctx, src_rate);
dst_nb_samples = av_rescale_rnd(delay + src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
if (dst_nb_samples > max_dst_nb_samples) {
av_freep(&dst_data[0]);
ret = av_samples_alloc(dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 1);
if (ret < 0)
break;
max_dst_nb_samples = dst_nb_samples;
}
// int fifo_size = swr_get_out_samples(swr_ctx,src_nb_samples);
// printf("fifo_size:%d\n", fifo_size);
// if(fifo_size < 1024)
// continue;
/* convert to destination format */
// ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
printf("t:%f in:%d out:%d\n", t, src_nb_samples, ret);
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
} while (t < 10);
冲刷重采样器
- 冲刷重采样,主要是为了将剩余的数据写入到文件中
- 输入数据写为
NULL
即可
c
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, NULL, 0);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
结束工作
- 释放重采样器内存、释放输入输出缓冲区内存
- 关闭输出文件
c
fclose(dst_file);
if (src_data)
av_freep(&src_data[0]);
av_freep(&src_data);
if (dst_data)
av_freep(&dst_data[0]);
av_freep(&dst_data);
swr_free(&swr_ctx);
完整代码
main.c
c
/*
* Copyright (c) 2012 Stefano Sabatini
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
* @example resampling_audio.c
* libswresample API use example.
*/
#include <libavutil/opt.h>
#include <libavutil/channel_layout.h>
#include <libavutil/samplefmt.h>
#include <libswresample/swresample.h>
static int get_format_from_sample_fmt(const char **fmt,
enum AVSampleFormat sample_fmt)
{
int i;
struct sample_fmt_entry {
enum AVSampleFormat sample_fmt; const char *fmt_be, *fmt_le;
} sample_fmt_entries[] = {
{ AV_SAMPLE_FMT_U8, "u8", "u8" },
{ AV_SAMPLE_FMT_S16, "s16be", "s16le" },
{ AV_SAMPLE_FMT_S32, "s32be", "s32le" },
{ AV_SAMPLE_FMT_FLT, "f32be", "f32le" },
{ AV_SAMPLE_FMT_DBL, "f64be", "f64le" },
};
*fmt = NULL;
for (i = 0; i < FF_ARRAY_ELEMS(sample_fmt_entries); i++) {
struct sample_fmt_entry *entry = &sample_fmt_entries[i];
if (sample_fmt == entry->sample_fmt) {
*fmt = AV_NE(entry->fmt_be, entry->fmt_le);
return 0;
}
}
fprintf(stderr,
"Sample format %s not supported as output format\n",
av_get_sample_fmt_name(sample_fmt));
return AVERROR(EINVAL);
}
/**
* Fill dst buffer with nb_samples, generated starting from t. 交错模式的
*/
static void fill_samples(double *dst, int nb_samples, int nb_channels, int sample_rate, double *t)
{
int i, j;
double tincr = 1.0 / sample_rate, *dstp = dst;
const double c = 2 * M_PI * 440.0;
/* generate sin tone with 440Hz frequency and duplicated channels */
for (i = 0; i < nb_samples; i++) {
*dstp =sin(c * *t);
for (j = 1; j < nb_channels; j++)
dstp[j] = dstp[0];
dstp += nb_channels;
*t += tincr;
}
}
int main(int argc, char **argv)
{
// 输入参数
int64_t src_ch_layout = AV_CH_LAYOUT_STEREO;
int src_rate = 48000;
enum AVSampleFormat src_sample_fmt = AV_SAMPLE_FMT_DBL;
int src_nb_channels = 0;
uint8_t **src_data = NULL; // 二级指针
int src_linesize;
int src_nb_samples = 1024;
// 输出参数
int64_t dst_ch_layout = AV_CH_LAYOUT_STEREO;
int dst_rate = 44100;
enum AVSampleFormat dst_sample_fmt = AV_SAMPLE_FMT_S16;
int dst_nb_channels = 0;
uint8_t **dst_data = NULL; //二级指针
int dst_linesize;
int dst_nb_samples;
int max_dst_nb_samples;
// 输出文件
const char *dst_filename = NULL; // 保存输出的pcm到本地,然后播放验证
FILE *dst_file;
int dst_bufsize;
const char *fmt;
// 重采样实例
struct SwrContext *swr_ctx;
double t;
int ret;
if (argc != 2) {
fprintf(stderr, "Usage: %s output_file\n"
"API example program to show how to resample an audio stream with libswresample.\n"
"This program generates a series of audio frames, resamples them to a specified "
"output format and rate and saves them to an output file named output_file.\n",
argv[0]);
exit(1);
}
dst_filename = argv[1];
dst_file = fopen(dst_filename, "wb");
if (!dst_file) {
fprintf(stderr, "Could not open destination file %s\n", dst_filename);
exit(1);
}
// 创建重采样器
/* create resampler context */
swr_ctx = swr_alloc();
if (!swr_ctx) {
fprintf(stderr, "Could not allocate resampler context\n");
ret = AVERROR(ENOMEM);
goto end;
}
// 设置重采样参数
/* set options */
// 输入参数
av_opt_set_int(swr_ctx, "in_channel_layout", src_ch_layout, 0);
av_opt_set_int(swr_ctx, "in_sample_rate", src_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", src_sample_fmt, 0);
// 输出参数
av_opt_set_int(swr_ctx, "out_channel_layout", dst_ch_layout, 0);
av_opt_set_int(swr_ctx, "out_sample_rate", dst_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "out_sample_fmt", dst_sample_fmt, 0);
// 初始化重采样
/* initialize the resampling context */
if ((ret = swr_init(swr_ctx)) < 0) {
fprintf(stderr, "Failed to initialize the resampling context\n");
goto end;
}
/* allocate source and destination samples buffers */
// 计算出输入源的通道数量
src_nb_channels = av_get_channel_layout_nb_channels(src_ch_layout);
// 给输入源分配内存空间
ret = av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_nb_channels,
src_nb_samples, src_sample_fmt, 0);
if (ret < 0) {
fprintf(stderr, "Could not allocate source samples\n");
goto end;
}
/* compute the number of converted samples: buffering is avoided
* ensuring that the output buffer will contain at least all the
* converted input samples */
// 计算输出采样数量
max_dst_nb_samples = dst_nb_samples =
av_rescale_rnd(src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
printf("max_dst_nb_samples = %d\n",max_dst_nb_samples);
/* buffer is going to be directly written to a rawaudio file, no alignment */
dst_nb_channels = av_get_channel_layout_nb_channels(dst_ch_layout);
// 分配输出缓存内存
ret = av_samples_alloc_array_and_samples(&dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 0);
printf("linesize = %d\n",dst_linesize);
if (ret < 0) {
fprintf(stderr, "Could not allocate destination samples\n");
goto end;
}
t = 0;
do {
/* generate synthetic audio */
// 生成输入源
fill_samples((double *)src_data[0], src_nb_samples, src_nb_channels, src_rate, &t);
/* compute destination number of samples */
int64_t delay = swr_get_delay(swr_ctx, src_rate);
dst_nb_samples = av_rescale_rnd(delay + src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
if (dst_nb_samples > max_dst_nb_samples) {
av_freep(&dst_data[0]);
ret = av_samples_alloc(dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 1);
if (ret < 0)****
break;
max_dst_nb_samples = dst_nb_samples;
}
// int fifo_size = swr_get_out_samples(swr_ctx,src_nb_samples);
// printf("fifo_size:%d\n", fifo_size);
// if(fifo_size < 1024)
// continue;
/* convert to destination format */
// ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
printf("t:%f in:%d out:%d\n", t, src_nb_samples, ret);
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
} while (t < 10);
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, NULL, 0);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
printf("dst_bufsize = %d\n",dst_bufsize);
printf("flush in:%d out:%d\n", 0, ret);
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
if ((ret = get_format_from_sample_fmt(&fmt, dst_sample_fmt)) < 0)
goto end;
fprintf(stderr, "Resampling succeeded. Play the output file with the command:\n"
"ffplay -f %s -channel_layout %"PRId64" -channels %d -ar %d %s\n",
fmt, dst_ch_layout, dst_nb_channels, dst_rate, dst_filename);
end:
fclose(dst_file);
if (src_data)
av_freep(&src_data[0]);
av_freep(&src_data);
if (dst_data)
av_freep(&dst_data[0]);
av_freep(&dst_data);
swr_free(&swr_ctx);
return ret < 0;
}