R中实现数值求导的包numDeriv

介绍

numDeriv 是一个用于数值求导的 R 包,它提供了计算函数导数的简单方法,支持一阶导数和高阶导数的计算。

计算一阶导数

r 复制代码
grad(func, x, method="Richardson", side=NULL, eps=1e-4, method.args=list(), ...) 

参数:

  • func:一个具有标量实数值结果的函数。
  • x:一个实标量或向量参数,表示要计算梯度的点(或多个点)。
  • method:取值为 "Richardson"、"simple" 或 "complex" 之一,用于指明进行近似计算所使用的方法。
  • method.args:传递给 method 的参数。未指定的参数将保留为详细说明中指定的默认值。
  • side:表明是否应尝试计算单侧导数。
  • eps: 数值导数的精度。
  • ...: 传递给 func 的额外参数。

一元函数

r 复制代码
library(numDeriv)
# 定义一个函数  
f <- function(x) {  
  return(x^2 + 2 * x + 1)  
}  

# 计算在 x = 1 处的导数  
result <- grad(f, x = 1)  
print(result)  # 输出:4  

二元函数

r 复制代码
library(numDeriv)
# 定义一个函数  
f <- function(x) {  
  return(x[1]^2 +  x[2]^2 + 1)  
}  

# 计算在 c(3,5)处的导数  
result <- grad(f, x = c(3,5))
print(result)  # 输出:c(6, 10)

计算二阶导数

r 复制代码
 hessian(func, x, method="Richardson", eps=1e-4, method.args=list(), ...)

参数:

  • func:一个具有标量实数值结果的函数。
  • x:一个实标量或向量参数,表示要计算梯度的点(或多个点)。
  • method:取值为 "Richardson"或 "complex" , 用于指明进行近似计算所使用的方法。
  • eps: 数值导数的精度。
  • method.args:传递给 method 的参数。未指定的参数将保留为详细说明中指定的默认值。
  • side:表明是否应尝试计算单侧导数。
  • ...: 传递给 func 的额外参数。

一元函数

r 复制代码
library(numDeriv)
# 定义一个函数  
f <- function(x) {  
  return(x^2 + 2 * x + 1)  
}  

# 计算在 x = 1 处的二阶导数  
result <- hessian(f, x = 3)  
print(result)  # 输出:2 
r 复制代码
library(numDeriv)
# 定义一个函数  
f <- function(x) {  
  return(x[1]^2 +  x[2]^2 + 1)  
}  

# 计算在 c(3,5)处的二阶导数  
result <- hessian(f, x = c(3,5))
print(result)  
# 输出
#           [,1]         [,2]
# [1,] 2.000000e+00 1.481603e-17
# [2,] 1.481603e-17 2.000000e+00

计算向量值函数的导数

r 复制代码
 jacobian(func, x, method="Richardson", side=NULL, eps=1e-4, method.args=list(), ...) 

参数:

  • func:一个向量值函数。
  • x:一个实标量或向量参数,表示要计算梯度的点(或多个点)。
  • method:取值为 "Richardson"、"simple" 或 "complex" 之一 , 用于指明进行近似计算所使用的方法。
  • method.args:传递给 method 的参数。未指定的参数将保留为详细说明中指定的默认值。
  • eps: 数值导数的精度。
  • side:表明是否应尝试计算单侧导数。
  • ...: 传递给 func 的额外参数。

示例

r 复制代码
library(numDeriv)
# 定义一个多变量函数  
g <- function(x) {  
  return(c(x[1]^2+x[2]^2, x[2]^2,x[1]^4))  
}  

# 计算雅可比矩阵  
jacobian_result <- jacobian(g, x = c(1, 2))  
print(jacobian_result)  
#        [,1] [,2]
# [1,]    2    4
# [2,]    0    4
# [3,]    4    0
相关推荐
图灵信徒1 天前
R语言绘图与可视化第六章总结
python·数据挖掘·数据分析·r语言
Tiger Z3 天前
《R for Data Science (2e)》免费中文翻译 (第12章) --- Logical vectors(1)
数据分析·r语言·数据科学·免费书籍
AI纪元故事会4 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
小八四爱吃甜食5 天前
【R语言】构建GO、KEGG相关不同物种的R包
开发语言·golang·r语言
梦想的初衷~6 天前
生命周期评价(LCA):理论、方法与工具、典型案例全解析
r语言·农业·林业·环境科学·地理·气候变化·生命周期评价
asyxchenchong8886 天前
OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·r语言
没有梦想的咸鱼185-1037-16636 天前
【生命周期评价(LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·数据分析·r语言
zhangfeng11337 天前
亲测有效的mem 流行病预测,时间序列预测,r语言做移动流行区间法,MEM流行病阈值设置指南
开发语言·r语言·生物信息
普通网友8 天前
Golang笔记——Interface类型
r语言
maizeman1269 天前
用R语言生成指定品种与对照的一元回归直线(含置信区间)
开发语言·回归·r语言·置信区间·品种测试