机器学习第三篇 模型评估(交叉验证)

  1. Sklearn:可以做数据预处理、分类、回归、聚类,不能做神经网络。
  2. 原始的工具包文档:
  3. scikit-learn: machine learning in Python --- scikit-learn 1.6.1 documentation
  4. 数据集:使用的是MNIST手写数字识别技术,大小为70000,数据类型为784个像素点。
  5. 模型评估方法有留一法、交叉验证法、自助法。
  6. 交叉验证:将数据集划分为K个大小相似的互斥子集,又称K折交叉验证,准确率为K次评估的平均值。
  7. Positove:正例;necative:负例。分类结果混淆矩阵(TP、FN、FP、TN)
  8. 查准率:TP/(TP+FP);查全率:TP/(TP+FN);
  9. ROC曲线全称是"受试者工作特征"曲线,纵轴为TPR(真正例率),横轴为FPR(假正例率)。

代码:

相关推荐
陈天伟教授4 小时前
基于学习的人工智能(4)机器学习基本框架
人工智能·学习·机器学习
studytosky4 小时前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
做萤石二次开发的哈哈4 小时前
11月27日直播预告 | 萤石智慧台球厅创新场景化方案分享
大数据·人工智能
AGI前沿4 小时前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
后端小肥肠5 小时前
小佛陀漫画怎么做?深扒中老年高互动赛道,用n8n流水线批量打造
人工智能·aigc·agent
是店小二呀5 小时前
本地绘图工具也能远程协作?Excalidraw+cpolar解决团队跨网画图难题
人工智能
i爱校对5 小时前
爱校对团队服务全新升级
人工智能
KL132881526935 小时前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel19905 小时前
人工智能的7大应用领域
人工智能
人工智能训练5 小时前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器