机器学习第三篇 模型评估(交叉验证)

  1. Sklearn:可以做数据预处理、分类、回归、聚类,不能做神经网络。
  2. 原始的工具包文档:
  3. scikit-learn: machine learning in Python --- scikit-learn 1.6.1 documentation
  4. 数据集:使用的是MNIST手写数字识别技术,大小为70000,数据类型为784个像素点。
  5. 模型评估方法有留一法、交叉验证法、自助法。
  6. 交叉验证:将数据集划分为K个大小相似的互斥子集,又称K折交叉验证,准确率为K次评估的平均值。
  7. Positove:正例;necative:负例。分类结果混淆矩阵(TP、FN、FP、TN)
  8. 查准率:TP/(TP+FP);查全率:TP/(TP+FN);
  9. ROC曲线全称是"受试者工作特征"曲线,纵轴为TPR(真正例率),横轴为FPR(假正例率)。

代码:

相关推荐
martian66514 分钟前
支持向量机(SVM)深度解析:从数学根基到工程实践
算法·机器学习·支持向量机
Jay Kay39 分钟前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio43 分钟前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و1 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳1 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
在美的苦命程序员1 小时前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
kngines1 小时前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_071 小时前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全1 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王1 小时前
互联网摸鱼日报(2025-07-01)
人工智能