机器学习第三篇 模型评估(交叉验证)

  1. Sklearn:可以做数据预处理、分类、回归、聚类,不能做神经网络。
  2. 原始的工具包文档:
  3. scikit-learn: machine learning in Python --- scikit-learn 1.6.1 documentation
  4. 数据集:使用的是MNIST手写数字识别技术,大小为70000,数据类型为784个像素点。
  5. 模型评估方法有留一法、交叉验证法、自助法。
  6. 交叉验证:将数据集划分为K个大小相似的互斥子集,又称K折交叉验证,准确率为K次评估的平均值。
  7. Positove:正例;necative:负例。分类结果混淆矩阵(TP、FN、FP、TN)
  8. 查准率:TP/(TP+FP);查全率:TP/(TP+FN);
  9. ROC曲线全称是"受试者工作特征"曲线,纵轴为TPR(真正例率),横轴为FPR(假正例率)。

代码:

相关推荐
lczdyx几秒前
从Flask到智能体:装饰器模式在AI系统中的架构迁移实践
人工智能·python·语言模型·架构·flask·装饰器模式
Acrelgq237 分钟前
政策支持与市场驱动:充电桩可持续发展的双轮引擎
人工智能
软件测试小仙女12 分钟前
AI测试工具Testim——告别自动化测试维护难题
自动化测试·软件测试·人工智能·测试工具·单元测试·集成测试·压力测试
xieyan081134 分钟前
MCP之一_MCP协议解析
人工智能
小华同学ai40 分钟前
2.1k star! 抓紧冲,DeepChat:连接AI与个人世界的智能助手的开源项目
人工智能·ai·开源·github·工具
界面开发小八哥1 小时前
智能Python开发工具PyCharm v2025.1——AI层级功能重磅升级
ide·人工智能·python·pycharm·开发工具
汀丶人工智能1 小时前
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
人工智能
Blossom.1181 小时前
可解释人工智能(XAI):让机器决策透明化
人工智能·驱动开发·深度学习·目标检测·机器学习·aigc·硬件架构
极客智谷1 小时前
Spring AI应用系列——基于Alibaba DashScope的聊天记忆功能实现
人工智能·后端
极客智谷1 小时前
Spring AI应用系列——基于Alibaba DashScope实现功能调用的聊天应用
人工智能·后端