沐曦玩转 LMDeploy、XTuner 和 InternLM3

学习链接: https://aicarrier.feishu.cn/wiki/O84LwkiBriUU0NkDwurcSufhnVb

一 LMDeploy推理及验证

1.1 下载LMDeploy

bash 复制代码
# 安装addict软件包
pip install addict mmengine mmengine-lite fire accelerate==0.32.1 nvidia-ml-py

# 解决LMDeploy对tranformers版本要求的Iusse:
pip install transformers==4.47.1

# 下载lmdeploy,并进入目录
git clone https://github.com/InternLM/lmdeploy.git
cd lmdeploy

1.2 部署验证结果

bash 复制代码
import lmdeploy
from lmdeploy import PytorchEngineConfig

if __name__ == "__main__":
    pipe = lmdeploy.pipeline("/root/public-model/models/internlm/internlm3-8b-instruct",
                             backend_config = PytorchEngineConfig(tp=1,
                                                                  cache_max_entry_count=0.8, device_type="maca",
                                                                  block_size=16)
                            )
    
    question = ["Shanghai is", "Please introduce China", "How are you?"]
    response = pipe(question, request_output_len=256, do_preprocess=False)
    for idx, r in enumerate(response):
        print(f"Q: {question[idx]}")
        print(f"A: {r.text}")
        print()

运行结果

二 XTune微调及验证

2.1 安装必要软件包

1. 进入容器

复制代码
`conda activate base`

2. 安装git

复制代码
执行命令`apt -y install git`

3. 安装mpi4py

复制代码
`pip install mpi4py`

4. 验证xtuner是否正确安装

复制代码
执行xtuner list-cfg|grep internlm,出现上图所示

5. 下载Tutorial

复制代码
`git clone https://github.com/InternLM/Tutorial.git -b camp4`

6. 创建finetune文件

复制代码
`mkdir -p /root/finetune && cd /root/finetune`

2.2 修改提供的数据集

1. 创建文件用于存储微调数据

复制代码
`mkdir -p /root/finetune/data && cd /root/finetune/data`
`cp -r /root/Tutorial/data/assistant_Tuner.jsonl /root/finetune/data`

2. 创建修改脚本

plain 复制代码
# 创建 change_script.py 文件
touch /root/finetune/data/change_script.py

根据教程将代码复制进change_script.py文件

并按照教程将44行代码修改

3. 执行脚本

Plain 复制代码
# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

assistant_Tuner_change.jsonl 是修改后符合 XTuner 格式的训练数据

4. 查看数据

cat assistant_Tuner_change.jsonl | head -n 3

得到数据如下:

2.3 准备训练脚本

根据教程获取官方写好的配置文件

2.4 修改微调参数

根据教程对internlm2_5_1.8b_lora_alpaca_e3_copy.py修改

2.4 启动微调

Plain 复制代码
cd /root/finetune
xtuner train ./config/internlm2_5_1.8b_lora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

2.5 权重转换

根据教学文档执行代码
xtuner convert pth_to_hf internlm2_5_1.8b_lora_alpaca_e3_copy.py /root/finetune/work_dirs/assistTuner/iter_864.pth ./hf

2.6 模型合并

根据教学文档微调模型合并

2.7 验证结果

python 复制代码
from transformers import AutoTokenizer, AutoModelForCausalLM

# 使用GPU
model_name = "/root/finetune/work_dirs/assistTuner/merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')

# 处理输入
prompt = "请介绍一下你自己"
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')

# 生成配置
outputs = model.generate(
    input_ids=inputs.input_ids,
    max_new_tokens=100,
    do_sample=True,
    temperature=0.8,
    top_p=0.95,
    pad_token_id=tokenizer.eos_token_id
)

# 解码结果
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
相关推荐
芝士AI吃鱼1 小时前
我为什么做了 Cogniflow?一个开发者关于“信息流”的思考与实践
人工智能·后端·aigc
程序员X小鹿1 小时前
完全免费!被这款国产AI漫画工具惊艳了,3步生成连载漫画!手机可用(附保姆级教程)
aigc
安思派Anspire7 小时前
构建一个自主深度思考的RAG管道以解决复杂查询--分析最终的高质量答案(8)
aigc·openai·agent
慕云紫英8 小时前
人工智能在全球多领域的应用潜力及当前技术面临的挑战
人工智能·aigc
Mintopia9 小时前
🤖 具身智能与 WebAIGC 的融合:未来交互技术的奇点漫谈
前端·javascript·aigc
猫头虎1 天前
昆仑芯 X HAMi X 百度智能云 | 昆仑芯 P800 XPU/vXPU 双模式算力调度方案落地
人工智能·百度·开源·aigc·文心一言·gpu算力·agi
极客密码1 天前
充了20刀 Cursor Pro 的朋友看到我的方案沉默了...
aigc·ai编程·cursor
后端小肥肠1 天前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
司马阅-SmartRead1 天前
司马阅与铨亿科技达成生态战略合作,AI赋能工业领域智能化转型
人工智能·aigc
Mintopia1 天前
🤖 通用人工智能(AGI)离 Web 应用还有多远?
前端·javascript·aigc