数据科学与计算

Seaborn的介绍

Seaborn 是一个建立在 Matplotlib 基础之上的 Python 数据可视化库,专注于绘制各种统计图形,以便更轻松地呈现和理解数据。 Seaborn 的设计目标是简化统计数据可视化的过程,提供高级接口和美观的默认主题,使得用户能够通过少量的代码实现复杂的图形。

Seaborn的安装与导入

Seaborn的安装:

1.pip install seaborn i Simple Index

2.conda install seaborn Simple Index

(清华源:https://pypi.tuna.tsinghua.edu.cn/simple)

Seaborn的导入: import seaborn as sns

sns.set_theme()

sns.set_theme() 可以选择不同的主题和模板。 格式为sns.set_theme(style="whitegrid", context="paper") style取值如下:

|------------------|--------------|
| darkgrid(默认) | 深色网格主题。 |
| whitegrid | 浅色网格主题。 |
| dark | 深色主题,没有网格。 |
| white | 浅色主题,没有网格。 |
| ticks | 深色主题,带有刻度标记。 |

context取值如下:

|---------------|-----------------------------|
| paper | 适用于小图,具有较小的标签和线条。 |
| notebook (默认) | 适用于笔记本电脑和类似环境,具有中等大小的标签和线条。 |
| talk | 适用于演讲幻灯片,具有大尺寸的标签和线条。 |
| poster | 适用于海报,具有非常大的标签和线条。 |

sns.scatterplot() - 散点图

sns.scatterplot()用于绘制两个变量之间的散点图,可选择添加趋势线。

sns.lineplot() - 折线图

sns.lineplot()用于绘制变量随着另一个变量变化的趋势线图。

sns.barplot() - 柱形图

sns.barplot()用于绘制变量的均值或其他聚合函数的柱状图。

sns.boxplot() - 箱线图

sns.boxplot()用于绘制变量的分布情况,包括最大值,最小值中位数、四分位数(包括上四分位数,下四分位数)等。

如果在图片外面还有一个点那么这个点是离群点,离群点一般会认为是一个异常值,它也有可能在上面有可能在下面有可能在旁边这个都有可能,我们要把它作为一个异常值去处理,就是认为它是一个异常值,对它进行一下数据预处理,把它调整成合理范围之内的点。

sns.heatmap() - 热图

sns.heatmap()用于绘制矩阵数据的热图,通常用于展示相关性矩阵。

sns.violinplot() - 小提琴图

sns.violinplot()用于显示分布的形状和密度估计,结合了箱线图和核密度估计。

图中有些地方窄是因为在这一块的数据是偏少,宽的地方是数据分布多,也就是和密度分布,和密度分布它其实代表的就是我们数据分布的一个情况。

相关推荐
图扑数字孪生4 小时前
基于 HT 数字孪生微电网:源网荷储一体化管控平台开发
信息可视化·数字孪生·微电网·电力能源·源网荷储
图扑可视化8 小时前
基于 HT 数字孪生微电网管控平台开发实践
信息可视化·数字孪生·三维可视化·源网荷储
计算机学姐8 小时前
基于Python的新能源汽车数据可视化及分析系统【2026最新】
vue.js·python·信息可视化·django·flask·汽车·推荐算法
科研面壁者9 小时前
SPSS——绘制三维条形图(3D条形图)
3d·信息可视化·spss·数据处理·科研绘图
MediaTea1 天前
Python 第三方库:plotnine(类 ggplot 的 Python 数据可视化库)
开发语言·python·信息可视化
无代码专家1 天前
数字化转型下的订单管理全流程解决方案
信息可视化
数据智研1 天前
【数据分享】古丝绸之路路线矢量数据
大数据·信息可视化·数据分析
泰迪智能科技1 天前
分享|高校商务数据分析实验室建设项目资源+实训软件+产融服务
信息可视化·数据挖掘·数据分析
GISer_Jing1 天前
SSE Conf大会分享——大模型驱动的智能 可视分析与故事叙述
前端·人工智能·信息可视化
毕设源码-赖学姐1 天前
【开题答辩全过程】以 基于Spark的全球地震信息数据可视化分析平台研究为例,包含答辩的问题和答案
大数据·信息可视化·spark