数据科学与计算

Seaborn的介绍

Seaborn 是一个建立在 Matplotlib 基础之上的 Python 数据可视化库,专注于绘制各种统计图形,以便更轻松地呈现和理解数据。 Seaborn 的设计目标是简化统计数据可视化的过程,提供高级接口和美观的默认主题,使得用户能够通过少量的代码实现复杂的图形。

Seaborn的安装与导入

Seaborn的安装:

1.pip install seaborn i Simple Index

2.conda install seaborn Simple Index

(清华源:https://pypi.tuna.tsinghua.edu.cn/simple)

Seaborn的导入: import seaborn as sns

sns.set_theme()

sns.set_theme() 可以选择不同的主题和模板。 格式为sns.set_theme(style="whitegrid", context="paper") style取值如下:

|------------------|--------------|
| darkgrid(默认) | 深色网格主题。 |
| whitegrid | 浅色网格主题。 |
| dark | 深色主题,没有网格。 |
| white | 浅色主题,没有网格。 |
| ticks | 深色主题,带有刻度标记。 |

context取值如下:

|---------------|-----------------------------|
| paper | 适用于小图,具有较小的标签和线条。 |
| notebook (默认) | 适用于笔记本电脑和类似环境,具有中等大小的标签和线条。 |
| talk | 适用于演讲幻灯片,具有大尺寸的标签和线条。 |
| poster | 适用于海报,具有非常大的标签和线条。 |

sns.scatterplot() - 散点图

sns.scatterplot()用于绘制两个变量之间的散点图,可选择添加趋势线。

sns.lineplot() - 折线图

sns.lineplot()用于绘制变量随着另一个变量变化的趋势线图。

sns.barplot() - 柱形图

sns.barplot()用于绘制变量的均值或其他聚合函数的柱状图。

sns.boxplot() - 箱线图

sns.boxplot()用于绘制变量的分布情况,包括最大值,最小值中位数、四分位数(包括上四分位数,下四分位数)等。

如果在图片外面还有一个点那么这个点是离群点,离群点一般会认为是一个异常值,它也有可能在上面有可能在下面有可能在旁边这个都有可能,我们要把它作为一个异常值去处理,就是认为它是一个异常值,对它进行一下数据预处理,把它调整成合理范围之内的点。

sns.heatmap() - 热图

sns.heatmap()用于绘制矩阵数据的热图,通常用于展示相关性矩阵。

sns.violinplot() - 小提琴图

sns.violinplot()用于显示分布的形状和密度估计,结合了箱线图和核密度估计。

图中有些地方窄是因为在这一块的数据是偏少,宽的地方是数据分布多,也就是和密度分布,和密度分布它其实代表的就是我们数据分布的一个情况。

相关推荐
腾讯云大数据2 小时前
RayData赋能文旅:可视化产品提升四大场景运营效率
信息可视化
优秘智能UMI6 小时前
私有化大模型架构解决方案构建指南
大数据·人工智能·深度学习·信息可视化·aigc
WJ.Polar10 小时前
Python柱状图
python·信息可视化
一百天成为python专家11 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
SickeyLee1 天前
BI 系统数据看板全解析:让数据可视化驱动业务决策
信息可视化·数据挖掘·数据分析
医工交叉实验工坊1 天前
R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
开发语言·信息可视化·r语言
saadiya~1 天前
Vue + WebSocket 实时数据可视化实战:多源融合与模拟数据双模式设计
vue.js·websocket·信息可视化
云天徽上2 天前
【数据可视化-70】奶茶店销量数据可视化:打造炫酷黑金风格的可视化大屏
python·信息可视化·数据分析·数据可视化·pyecharts
JosieBook2 天前
【开源】WpfMap:一个基于WPF(Windows Presentation Foundation)技术构建的数据可视化大屏展示页面
信息可视化·wpf
大美B端工场-B端系统美颜师2 天前
实时数据可视化的“心跳”设计:毫秒级延迟下的动态图表抗闪烁优化方案
信息可视化·数据挖掘·数据分析