Android运行时ART加载类和方法的过程分析

目录

一,概述

二,ART运行时的入口


一,概述

既然ART运行时执行的都是翻译DEX字节码后得到的本地机器指令了,为什么还需要在OAT文件中包含DEX文件,并且将它加载到内存去呢?这是因为ART运行时提供了Java虚拟机接口,而要实现Java虚拟机接口不得不依赖于DEX文件

ART运行时查找类方法的本地机器指令的过程

为了方便描述,我们将DEX文件中描述的类和方法称为DEX类(Dex Class)和DEX方法(Dex Method),而将在OAT文件中描述的类和方法称为OAT类(Oat Class)和OAT方法(Oat Method)。接下来我们还会看到,ART运行时在内部又会使用另外两个不同的术语来描述类和方法,其中将类描述为Class,而将类方法描述为ArtMethod。

在图1中,为了找到一个类方法的本地机器指令,我们需要执行以下的操作:

  1. 在DEX文件中找到目标DEX类的编号,并且以这个编号为索引,在OAT文件中找到对应的OAT类。

  2. 在DEX文件中找到目标DEX方法的编号,并且以这个编号为索引,在上一步找到的OAT类中找到对应的OAT方法。

  3. 使用上一步找到的OAT方法的成员变量begin_和code_offset_,计算出该方法对应的本地机器指令

二,ART运行时的入口

复制代码
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
    ALOGD(">>>>>> START %s uid %d <<<<<<\n",
            className != NULL ? className : "(unknown)", getuid());

    static const String8 startSystemServer("start-system-server");

    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    for (size_t i = 0; i < options.size(); ++i) {
        if (options[i] == startSystemServer) {
           /* track our progress through the boot sequence */
           const int LOG_BOOT_PROGRESS_START = 3000;
           LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
        }
    }

    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }

    //const char* kernelHack = getenv("LD_ASSUME_KERNEL");
    //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);

    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env, zygote) != 0) {
        return;
    }
    onVmCreated(env);

    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {

''''''''''''''''''''
}

首先是通过调用函数startVm创建了一个Java虚拟机mJavaVM及其JNI接口env。这个Java虚拟机实际上就是ART运行时。在接下来的描述中,我们将不区分ART虚拟机和ART运行时,并且认为它们表达的是同一个概念。获得了ART虚拟机的JNI接口之后,就可以通过它提供的函数FindClass和GetStaticMethodID来加载com.android.internal.os.ZygoteInit类及其静态成员函数main。于是,最后就可以再通过JNI接口提供的函数CallStaticVoidMethod来调用com.android.internal.os.ZygoteInit类的静态成员函数main,以及进行到ART虚拟机里面去运行。

在分析JNI接口FindClass和GetStaticMethodID的实现之前,我们先要讲清楚JNI接口是如何创建的

复制代码
extern "C" jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
  return JniInvocation::GetJniInvocation().JNI_CreateJavaVM(p_vm, p_env, vm_args);
}

JNI类的静态成员函数FindClass的实现如下所示

/Volumes/aosp/android-8.1.0_r52/art/runtime/jni_internal.cc

复制代码
static jclass FindClass(JNIEnv* env, const char* name) {
    CHECK_NON_NULL_ARGUMENT(name);
    Runtime* runtime = Runtime::Current();
    ClassLinker* class_linker = runtime->GetClassLinker();
    std::string descriptor(NormalizeJniClassDescriptor(name));
    ScopedObjectAccess soa(env);
    mirror::Class* c = nullptr;
    if (runtime->IsStarted()) {
      StackHandleScope<1> hs(soa.Self());
      Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetClassLoader(soa)));
      c = class_linker->FindClass(soa.Self(), descriptor.c_str(), class_loader);
    } else {
      c = class_linker->FindSystemClass(soa.Self(), descriptor.c_str());
    }
    return soa.AddLocalReference<jclass>(c);
  }

NI类的静态成员函数FindClass首先是判断ART运行时是否已经启动起来。如果已经启动,那么就通过调用函数GetClassLoader来获得当前线程所关联的ClassLoader,并且以此为参数,调用前面获得的ClassLinker对象的成员函数FindClass来加载由参数name指定的类。一般来说,当前线程所关联的ClassLoader就是当前正在执行的类方法所关联的ClassLoader,即用来加载当前正在执行的类的ClassLoader。如果ART虚拟机还没有开始执行类方法,就像我们现在这个场景,那么当前线程所关联的ClassLoader实际上就系统类加载器,即SystemClassLoader。

如果ART运行时还没有启动,那么这时候只可以加载系统类。这个通过前面获得的ClassLinker对象的成员函数FindSystemClass来实现的。在我们这个场景中,ART运行时已经启动,因此,接下来我们就继续分析ClassLinker类的成员函数FindClass的实现。

ClassLinker类的成员函数FindClass的实现如下所示:

/Volumes/aosp/android-8.1.0_r52/art/runtime/class_linker.cc

复制代码
mirror::Class* ClassLinker::FindClass(Thread* self,
                                      const char* descriptor,
                                      Handle<mirror::ClassLoader> class_loader) {
  DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
  DCHECK(self != nullptr);
  self->AssertNoPendingException();
  self->PoisonObjectPointers();  // For DefineClass, CreateArrayClass, etc...
  if (descriptor[1] == '\0') {
    // only the descriptors of primitive types should be 1 character long, also avoid class lookup
    // for primitive classes that aren't backed by dex files.
    return FindPrimitiveClass(descriptor[0]);
  }
  const size_t hash = ComputeModifiedUtf8Hash(descriptor);
  // Find the class in the loaded classes table.
  ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, class_loader.Get());
  if (klass != nullptr) {
    return EnsureResolved(self, descriptor, klass);
  }
  // Class is not yet loaded.
  if (descriptor[0] != '[' && class_loader == nullptr) {
    // Non-array class and the boot class loader, search the boot class path.
    ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
    if (pair.second != nullptr) {
      return DefineClass(self,
                         descriptor,
                         hash,
                         ScopedNullHandle<mirror::ClassLoader>(),
                         *pair.first,
                         *pair.second);
    } else {
      // The boot class loader is searched ahead of the application class loader, failures are
      // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
      // trigger the chaining with a proper stack trace.
      ObjPtr<mirror::Throwable> pre_allocated =
          Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
      self->SetException(pre_allocated);
      return nullptr;
    }
  }
  ObjPtr<mirror::Class> result_ptr;
  bool descriptor_equals;
  if (descriptor[0] == '[') {
    result_ptr = CreateArrayClass(self, descriptor, hash, class_loader);
    DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending());
    DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor));
    descriptor_equals = true;
  } else {
    ScopedObjectAccessUnchecked soa(self);
    bool known_hierarchy =
        FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr);
    if (result_ptr != nullptr) {
      // The chain was understood and we found the class. We still need to add the class to
      // the class table to protect from racy programs that can try and redefine the path list
      // which would change the Class<?> returned for subsequent evaluation of const-class.
      DCHECK(known_hierarchy);
      DCHECK(result_ptr->DescriptorEquals(descriptor));
      descriptor_equals = true;
    } else {
      // Either the chain wasn't understood or the class wasn't found.
      //
      // If the chain was understood but we did not find the class, let the Java-side
      // rediscover all this and throw the exception with the right stack trace. Note that
      // the Java-side could still succeed for racy programs if another thread is actively
      // modifying the class loader's path list.

      if (!self->CanCallIntoJava()) {
        // Oops, we can't call into java so we can't run actual class-loader code.
        // This is true for e.g. for the compiler (jit or aot).
        ObjPtr<mirror::Throwable> pre_allocated =
            Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
        self->SetException(pre_allocated);
        return nullptr;
      }
''''''''''''''''''''''''''''''''''''''''''''''''''''''''
}

ClassLinker类的成员函数FindClass首先是调用另外一个成员函数LookupClass来检查参数descriptor指定的类是否已经被加载过。如果是的话,那么ClassLinker类的成员函数LookupClass就会返回一个对应的Class对象,这个Class对象接着就会返回给调用者,表示加载已经完成

知道了参数descriptor指定的类定义在哪一个DEX文件之后,就可以通过ClassLinker类的另外一个成员函数DefineClass来从中加载它了。接下来,我们就继续分析ClassLinker类的成员函数DefineClass的实现

复制代码
mirror::Class* ClassLinker::DefineClass(Thread* self,
                                        const char* descriptor,
                                        size_t hash,
                                        Handle<mirror::ClassLoader> class_loader,
                                        const DexFile& dex_file,
                                        const DexFile::ClassDef& dex_class_def) {
  StackHandleScope<3> hs(self);
  auto klass = hs.NewHandle<mirror::Class>(nullptr);

  // Load the class from the dex file.
  if (UNLIKELY(!init_done_)) {
    // finish up init of hand crafted class_roots_
    if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
      klass.Assign(GetClassRoot(kJavaLangObject));
    } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
      klass.Assign(GetClassRoot(kJavaLangClass));
    } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
      klass.Assign(GetClassRoot(kJavaLangString));
    } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
      klass.Assign(GetClassRoot(kJavaLangRefReference));
    } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
      klass.Assign(GetClassRoot(kJavaLangDexCache));
    } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) {
      klass.Assign(GetClassRoot(kDalvikSystemClassExt));
    }
  }

  if (klass == nullptr) {
    // Allocate a class with the status of not ready.
    // Interface object should get the right size here. Regular class will
    // figure out the right size later and be replaced with one of the right
    // size when the class becomes resolved.
    klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
  }
  if (UNLIKELY(klass == nullptr)) {
    self->AssertPendingOOMException();
    return nullptr;
  }

调用ClassLinker类的成员函数DefineClass的时候,如果ClassLinker正处于初始化过程,即其成员变量init_done_的值等于false,并且参数descriptor描述的是特定的内部类,那么就将本地变量klass指向它们,其余情况则会通过成员函数AllocClass为其分配存储空间,以便后面通过成员函数LoadClass进行初始化

接下来,我们主要分析ClassLinker类的成员函数LoadClass的实现,以便可以了解类的加载过程。

ClassLinker类的成员函数LoadClass的实现如下所示

复制代码
void ClassLinker::LoadClass(Thread* self,
                            const DexFile& dex_file,
                            const DexFile::ClassDef& dex_class_def,
                            Handle<mirror::Class> klass) {
  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
  if (class_data == nullptr) {
    return;  // no fields or methods - for example a marker interface
  }
  LoadClassMembers(self, dex_file, class_data, klass);
}

void ClassLinker::LoadClassMembers(Thread* self,
                                   const DexFile& dex_file,
                                   const uint8_t* class_data,
                                   Handle<mirror::Class> klass) {
  {
    // Note: We cannot have thread suspension until the field and method arrays are setup or else
    // Class::VisitFieldRoots may miss some fields or methods.
    ScopedAssertNoThreadSuspension nts(__FUNCTION__);
    // Load static fields.
    // We allow duplicate definitions of the same field in a class_data_item
    // but ignore the repeated indexes here, b/21868015.
    LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
    ClassDataItemIterator it(dex_file, class_data);
    LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
                                                                allocator,
                                                                it.NumStaticFields());
    size_t num_sfields = 0;
    uint32_t last_field_idx = 0u;
    for (; it.HasNextStaticField(); it.Next()) {
      uint32_t field_idx = it.GetMemberIndex();
      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
      if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
        DCHECK_LT(num_sfields, it.NumStaticFields());
        LoadField(it, klass, &sfields->At(num_sfields));
        ++num_sfields;
        last_field_idx = field_idx;
      }
    }

    // Load instance fields.
    LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
                                                                allocator,
                                                                it.NumInstanceFields());
    size_t num_ifields = 0u;
    last_field_idx = 0u;
    for (; it.HasNextInstanceField(); it.Next()) {
      uint32_t field_idx = it.GetMemberIndex();
      DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
      if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
        DCHECK_LT(num_ifields, it.NumInstanceFields());
        LoadField(it, klass, &ifields->At(num_ifields));
        ++num_ifields;
        last_field_idx = field_idx;
      }
    }
'''''''''''''''
}

们首先要明确一下各个参数的含义:

dex_file: 类型为DexFile,描述要加载的类所在的DEX文件。

dex_class_def: 类型为ClassDef,描述要加载的类在DEX文件里面的信息。

klass: 类型为Class,描述加载完成的类。

class_loader: 类型为ClassLoader,描述所使用的类加载器

ClassLinker类的成员函数LoadClass的任务就是要用dex_file、dex_class_def、class_loader三个参数包含的相关信息设置到参数klass描述的Class对象去,以便可以得到一个完整的已加载类信息。

复制代码
static jmethodID FindMethodID(ScopedObjectAccess& soa, jclass jni_class,
                              const char* name, const char* sig, bool is_static)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Class> c = EnsureInitialized(soa.Self(), soa.Decode<mirror::Class>(jni_class));
  if (c == nullptr) {
    return nullptr;
  }
  ArtMethod* method = nullptr;
  auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
  if (c->IsInterface()) {
    method = c->FindInterfaceMethod(name, sig, pointer_size);
  } else {
    method = c->FindClassMethod(name, sig, pointer_size);
  }
  if (method == nullptr || method->IsStatic() != is_static) {
    ThrowNoSuchMethodError(soa, c, name, sig, is_static ? "static" : "non-static");
    return nullptr;
  }
  return jni::EncodeArtMethod(method);
}

函数FindMethodID的执行过程如下所示:

  1. 将参数jni_class的值转换为一个Class指针c,因此就可以得到一个Class对象,并且通过ClassLinker类的成员函数EnsureInitialized确保该Class对象描述的类已经初始化。

  2. Class对象c描述的类在加载的过程中,经过解析已经关联上一系列的成员函数。这些成员函数可以分为两类:Direct和Virtual。Direct类的成员函数包括所有的静态成员函数、私有成员函数和构造函数,而Virtual则包括所有的虚成员函数。因此:

2.1. 当参数is_static的值等于true时,那么就表示要查找的是静态成员函数,这时候就在Class对象c描述的类的关联的Direct成员函数列表中查找参数name和sig对应的成员函数。这是通过调用Class类的成员函数FindDirectMethod来实现的。

2.2. 当参数is_static的值不等于true时,那么就表示要查找的是虚拟成员函数或者非静态的Direct成员函数,这时候先在Class对象c描述的类的关联的Virtual成员函数列表中查找参数name和sig对应的成员函数。这是通过调用Class类的成员函数FindVirtualMethod来实现的。如果找不到对应的虚拟成员函数,那么再在Class对象c描述的类的关联的Direct成员函数列表中查找参数name和sig对应的成员函数。

  1. 经过前面的查找过程,如果都不能在Class对象c描述的类中找到与参数name和sig对应的成员函数,那么就抛出一个NoSuchMethodError异常。否则的话,就将查找得到的ArtMethod对象封装成一个jmethodID值返回给调用者。

也就是说,我们通过调用JNI接口GetStaticMethodID获得的不透明jmethodID值指向的实际上是一个ArtMethod对象。得益于前面的类加载过程,当我们获得了一个ArtMethod对象之后,就可以轻松地得到它的本地机器指令入口,进而对它进行执行

相关推荐
LSL666_4 小时前
5 Repository 层接口
android·运维·elasticsearch·jenkins·repository
alexhilton7 小时前
在Jetpack Compose中创建CRT屏幕效果
android·kotlin·android jetpack
2501_940094029 小时前
emu系列模拟器最新汉化版 安卓版 怀旧游戏模拟器全集附可运行游戏ROM
android·游戏·安卓·模拟器
下位子10 小时前
『OpenGL学习滤镜相机』- Day9: CameraX 基础集成
android·opengl
参宿四南河三11 小时前
Android Compose SideEffect(副作用)实例加倍详解
android·app
火柴就是我12 小时前
mmkv的 mmap 的理解
android
没有了遇见12 小时前
Android之直播宽高比和相机宽高比不支持后动态获取所支持的宽高比
android
shenshizhong13 小时前
揭开 kotlin 中协程的神秘面纱
android·kotlin
vivo高启强13 小时前
如何简单 hack agp 执行过程中的某个类
android
沐怡旸13 小时前
【底层机制】 Android ION内存分配器深度解析
android·面试