机器学习在信用卡欺诈检测中的应用思考

近期在金融风控领域完成了一个信用卡 一、数据特性与处理难点

该数据集包含28万条交易记录,欺诈样本仅占0.17%,呈现典型的极端不平衡分布。原始特征已通过PCA处理得到V1-V28数值型特征,需特别注意时间戳(Time)和交易金额(Amount)两个关键字段的处理。通过绘制交易时间分布图发现,凌晨时段的异常交易频率显著增加,这为后续特征工程提供了重要方向。

二、数据预处理的三大突破点

  1. 对交易金额进行RobustScaler处理,有效消除异常值干扰

  2. 将时间戳转换为24小时制的周期函数,捕捉不同时段的欺诈规律

  3. 通过热力图分析剔除V13等低相关特征,降低噪声干扰

相关推荐
Keep_Trying_Go1 天前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
懒羊羊吃辣条1 天前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列
人工智能培训1 天前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
板面华仔1 天前
机器学习入门(二)——逻辑回归 (Logistic Regression)
python·机器学习
一人の梅雨1 天前
VVIC图片搜索接口进阶实战:服装批发场景下的精准识图与批量调度方案
开发语言·机器学习·php
矢志航天的阿洪1 天前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
小鸡吃米…1 天前
机器学习 —— 数据缩放
人工智能·python·机器学习
JHC0000001 天前
智能体造论子--简单封装大模型输出审核器
开发语言·python·机器学习
龙腾AI白云1 天前
AI算法实战:逻辑回归在风控场景中的应用
深度学习·机器学习·知识图谱
九河云1 天前
数字韧性时代,华为云CBR为业务连续性注入“免疫基因”
大数据·人工智能·安全·机器学习·华为云