机器学习在信用卡欺诈检测中的应用思考

近期在金融风控领域完成了一个信用卡 一、数据特性与处理难点

该数据集包含28万条交易记录,欺诈样本仅占0.17%,呈现典型的极端不平衡分布。原始特征已通过PCA处理得到V1-V28数值型特征,需特别注意时间戳(Time)和交易金额(Amount)两个关键字段的处理。通过绘制交易时间分布图发现,凌晨时段的异常交易频率显著增加,这为后续特征工程提供了重要方向。

二、数据预处理的三大突破点

  1. 对交易金额进行RobustScaler处理,有效消除异常值干扰

  2. 将时间戳转换为24小时制的周期函数,捕捉不同时段的欺诈规律

  3. 通过热力图分析剔除V13等低相关特征,降低噪声干扰

相关推荐
لا معنى له4 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
齐齐大魔王8 小时前
COCO 数据集
人工智能·机器学习
式51610 小时前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
Coding茶水间10 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
brave and determined11 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
brave and determined12 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
源于花海12 小时前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应
科士威传动13 小时前
丝杆支撑座同轴度如何安装?
人工智能·科技·机器学习·自动化
_Li.13 小时前
机器学习-集成学习
人工智能·机器学习·集成学习
极度畅想14 小时前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离