YOLO-World:基于YOLOv8的开放词汇目标检测

文章目录


前言

本文介绍一篇来自腾讯的开放词汇检测工作,发表自CVPR2024,论文链接,开源地址

1、出发点

GroundingDINO在开放词汇检测任务中大放异彩,因此本文希望在轻量化的YOLOv8上也搞一个轻量化的开放词汇检测算法。最终效果吧,是模型又快而且精度基本持平。

2、方法

模型总体结构比较简单,主体检测网络采用的是YOLOv8,为了实现开放词汇检测任务,将分类头替换成"特征之间比对头",具体来说就是将检测网络每个anchor所对应的特征向量和文本嵌入向量做对比,计算相似性,进而实现开放词汇检测目的。

2.1.TextEncoder

首先说下TextEncoder,在训练阶段,需要带着庞大的TextEncoder,而在部署阶段,则可以首先离线提取出文本的嵌入向量,这样在部署阶段就能省一个TextEncoder的计算量,使其更加轻量。

2.2.ReparmVLPAN

在得到TextEmbedding和图像特征向量C3-C5后,本文设计了一个VLPAN交互模块,简单来说:用图像特征向量更新文本,在用文本更新图像特征向量。当然,在部署阶段,TextEmbedding也是可以被作为权重写入到onnx里面的。

本人不想在此过多介绍这个模块,因为在实际应用中,建议还是用PAN比较好,因为这个模块收益不多,而且若检测的文本顺序不同,会导致检测结果不同。原因是Max-Sigmoid算子,读者有兴趣可自己check下。

2.3.输出头

样本分配策略是SIMOTA,跟v8一样。检测头就是yolov8,每个anchor预测4个上下左右距离,损失用的是DFL Loss;而分类头则是对比损失头,最终输出维度为: n u m _ a n c h o r ∗ 80 num\_anchor * 80 num_anchor∗80,做二元交叉熵损失,即对应正样本anchor为1,其余为0。

3、实验

3.1.数据集

数据集采用O365+GoldG(GQA+Flickr)。

3.2.LVIS测试集

没啥可说的,FPS高,而且精度跟一系列开放词汇检测算法持平。但paper中指标跟git开源有出入,后续改进论文均以git为准。

总结

总之是一篇不错的轻量化OVD算法,算是挖了个新坑。每个模块其实都有值得探索改进的空间,包括后来的YOLOE , YOLOUniOW等,后续会逐个介绍,包括这类算法的一些不足,敬请期待。

相关推荐
木卫二号Coding几秒前
第六十一篇-ComfyUI+V100-32G+GGUF+运行Flux Schnell GGUF
人工智能
青啊青斯9 分钟前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
深度学习实战训练营10 分钟前
HRNet:深度高分辨率表示学习用于人体姿态估计-k学长深度学习专栏
人工智能·深度学习
Moment10 分钟前
小米不仅造车,还造模型?309B参数全开源,深度思考完胜DeepSeek 🐒🐒🐒
前端·人工智能·后端
CNRio11 分钟前
从“手搓Prompt“到“物理世界提示词“:Looki L1如何重塑AI交互范式
人工智能·prompt·交互
古城小栈31 分钟前
雾计算架构:边缘-云端协同的分布式 AI 推理
人工智能·分布式·架构
JoannaJuanCV32 分钟前
自动驾驶—CARLA仿真(7)vehicle_physics demo
人工智能·机器学习·自动驾驶
Allen正心正念202538 分钟前
AWS专家Greg Coquillo提出的 6种LLM ORCHESTRATION PATTERNS解析
人工智能·架构
每日学点SEO40 分钟前
「网站新页面冲进前10名成功率下降69%」:2025 年SEO竞争格局分析
大数据·数据库·人工智能·搜索引擎·chatgpt
HalvmånEver1 小时前
AI 工具实战测评:从技术性能到场景落地的全方位解析
人工智能·ai