几何_平面方程表示_点+向量形式

三维平面方程可以写成

π : n ⊤ X + d = 0 \boxed{\pi: \mathbf{n}^\top \mathbf{X} + d = 0} π:n⊤X+d=0


📐 一、几何直观解释

✅ 平面是"法向量 + 平面上一点"定义的集合

一个平面可以由:

  • 一个单位法向量 n ∈ R 3 \mathbf{n} \in \mathbb{R}^3 n∈R3(垂直于平面);
  • 和一个平面上某点 X 0 ∈ R 3 \mathbf{X}_0 \in \mathbb{R}^3 X0∈R3;

定义平面上任意点 X \mathbf{X} X 满足:

( X − X 0 ) ⋅ n = 0 (\mathbf{X} - \mathbf{X}_0) \cdot \mathbf{n} = 0 (X−X0)⋅n=0

即,平面上任意点到参考点的连线,与法向量正交(内积为0)。


🧮 展开上述公式:

n ⊤ X − n ⊤ X 0 = 0 ⇒ n ⊤ X + d = 0 \mathbf{n}^\top \mathbf{X} - \mathbf{n}^\top \mathbf{X}_0 = 0 \Rightarrow \mathbf{n}^\top \mathbf{X} + d = 0 n⊤X−n⊤X0=0⇒n⊤X+d=0

其中 d = − n ⊤ X 0 d = -\mathbf{n}^\top \mathbf{X}_0 d=−n⊤X0 是平面到原点的有向距离。

这就是常见的Hesse平面标准方程形式。


📊 二、代数形式说明

  • 给定平面法向量 n = [ a b c ] \mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} n= abc
  • 给定平面上一点 X 0 = [ x 0 y 0 z 0 ] \mathbf{X}_0 = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} X0= x0y0z0

则平面上任意点 X = [ x y z ] \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} X= xyz 满足:

a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 ⇒ a x + b y + c z + d = 0 a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \Rightarrow ax + by + cz + d = 0 a(x−x0)+b(y−y0)+c(z−z0)=0⇒ax+by+cz+d=0

其中:

d = − ( a x 0 + b y 0 + c z 0 ) d = -(ax_0 + by_0 + cz_0) d=−(ax0+by0+cz0)

所以这是一种通用表示平面的方法。


🧱 举例:地面与墙面

  • 地面平面(世界Y轴为竖直方向):

    • 法向量 n = [ 0 , 1 , 0 ] ⊤ \mathbf{n} = [0, 1, 0]^\top n=[0,1,0]⊤
    • 若地面通过原点,则 d = 0 d = 0 d=0
    • 方程: y = 0 ⇒ n ⊤ X + d = 0 y = 0 \Rightarrow \mathbf{n}^\top \mathbf{X} + d = 0 y=0⇒n⊤X+d=0
  • 前方墙面平面(正对相机,法向Z轴):

    • n = [ 0 , 0 , 1 ] ⊤ \mathbf{n} = [0, 0, 1]^\top n=[0,0,1]⊤,若离相机3米远: d = − 3 d = -3 d=−3
    • 方程: z = 3 ⇒ n ⊤ X + d = 0 z = 3 \Rightarrow \mathbf{n}^\top \mathbf{X} + d = 0 z=3⇒n⊤X+d=0

✅ 总结

项目 含义
n \mathbf{n} n 平面的单位法向量
d d d 平面到原点的有向距离(负号源自代数形式)
平面点 X \mathbf{X} X 满足 n ⊤ X + d = 0 \mathbf{n}^\top \mathbf{X} + d = 0 n⊤X+d=0

相关推荐
刘叨叨趣味运维2 天前
解剖K8s控制平面(上):API Server与etcd如何成为集群的“大脑“与“记忆“?
平面·kubernetes·etcd
Ulyanov4 天前
超越平面:用impress.js打造智能多面棱柱演示器
开发语言·前端·javascript·平面
求真求知的糖葫芦5 天前
微波工程4.3节散射矩阵(S参数矩阵)参考平面移动与广义散射参数学习笔记(下)(自用)
学习·平面·矩阵·射频工程
yongui478347 天前
实现线结构光技术的摄像机标定、光平面标定与三维重建
数码相机·平面
咯哦哦哦哦10 天前
pick_and_place_with_2d_matching_moving_cam.hdev *眼在手上 2D匹配,3D抓取【案例解析】
计算机视觉·平面·3d
Σίσυφος190011 天前
halcon 和PCL 中平面矫正算法原理
平面
Matlab光学19 天前
MATLAB仿真:从平面到立体! 3D 曲线光束塑形技术,微观操控再升级
平面·3d
杀生丸学AI24 天前
【平面重建】3D高斯平面:混合2D/3D光场重建(NeurIPS2025)
人工智能·平面·3d·大模型·aigc·高斯泼溅·空间智能
fengfuyao98525 天前
基于MATLAB实现任意平面太阳辐射量计算
算法·matlab·平面
zl_vslam1 个月前
SLAM中的非线性优-3D图优化之地平面约束(十四)
算法·计算机视觉·平面·3d