PyTorch的dataloader制作自定义数据集

PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割成小batch,并在训练过程中进行数据预处理。以下是制作PyTorch的dataloader的简单步骤:

  1. 导入必要的库

    import torch
    from torch.utils.data import DataLoader, Dataset

  2. 定义数据集类 需要自定义一个继承自torch.utils.data.Dataset的类,在该类中实现__len____getitem__方法。

    class MyDataset(Dataset):
    def init(self, data):
    self.data = data

    复制代码
     def __len__(self):
         return len(self.data)
     
     def __getitem__(self, index):
         # 返回第index个数据样本
         return self.data[index]
  3. 创建数据集实例

    data = [1, 2, 3, 4, 5]
    dataset = MyDataset(data)

  4. 创建dataloader实例

使用torch.utils.data.DataLoader创建dataloader实例,可以设置batch_sizeshuffle等参数。

复制代码
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
  1. 使用dataloader读取数据

    for batch in dataloader:
    # batch为一个batch的数据,可以直接用于训练
    print(batch)

以上是制作PyTorch的dataloader的简单步骤,根据实际需求可以进行更复杂的操作,如数据增强、并行读取等。

5.已经分类的文件生成标注文件

假设你已经将所有的图片按照类别分别放到了十个文件夹中,可以使用以下代码生成标注文件:

复制代码
import os
# 定义图片所在的文件夹路径和标注文件的路径
img_dir = '/path/to/image/directory'
ann_file = '/path/to/annotation/file.txt'
# 遍历每个类别文件夹中的图片,将标注信息写入到标注文件中
with open(ann_file, 'w') as f:
    for class_id in range(1, 11):
        class_dir = os.path.join(img_dir, 'class{}'.format(class_id))
        for filename in os.listdir(class_dir):
            if filename.endswith('.jpg'):
                # 写入图片的文件名和类别
                f.write('{} {}\n'.format(filename, class_id))
相关推荐
Jonathan Star40 分钟前
用Python轻松提取视频音频并去除静音片段
开发语言·python·音视频
AKAMAI42 分钟前
Fermyon推出全球最快边缘计算平台:WebAssembly先驱携手Akamai云驱动无服务器技术新浪潮
人工智能·云计算·边缘计算
云雾J视界1 小时前
TMS320C6000 VLIW架构并行编程实战:加速AI边缘计算推理性能
人工智能·架构·边缘计算·dsp·vliw·tms320c6000
想ai抽2 小时前
基于AI Agent的数据资产自动化治理实验
人工智能·langchain·embedding
刘火锅2 小时前
Java 17 环境下 EasyPoi 反射访问异常分析与解决方案(ExcelImportUtil.importExcelMore)
java·开发语言·python
小马过河R2 小时前
AIGC视频生成之Deepseek、百度妙笔组合实战小案例
人工智能·深度学习·计算机视觉·百度·aigc
june-Dai Yi3 小时前
免费的大语言模型API接口
人工智能·语言模型·自然语言处理·chatgpt·api接口
Hi202402173 小时前
Qt+Qml客户端和Python服务端的网络通信原型
开发语言·python·qt·ui·网络通信·qml
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】农作物病害数据集 11498 张,病害检测,YOLOv8农作物病虫害识别系统实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·1024程序员节
数据库安全3 小时前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类