PyTorch的dataloader制作自定义数据集

PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割成小batch,并在训练过程中进行数据预处理。以下是制作PyTorch的dataloader的简单步骤:

  1. 导入必要的库

    import torch
    from torch.utils.data import DataLoader, Dataset

  2. 定义数据集类 需要自定义一个继承自torch.utils.data.Dataset的类,在该类中实现__len____getitem__方法。

    class MyDataset(Dataset):
    def init(self, data):
    self.data = data

    复制代码
     def __len__(self):
         return len(self.data)
     
     def __getitem__(self, index):
         # 返回第index个数据样本
         return self.data[index]
  3. 创建数据集实例

    data = [1, 2, 3, 4, 5]
    dataset = MyDataset(data)

  4. 创建dataloader实例

使用torch.utils.data.DataLoader创建dataloader实例,可以设置batch_sizeshuffle等参数。

复制代码
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
  1. 使用dataloader读取数据

    for batch in dataloader:
    # batch为一个batch的数据,可以直接用于训练
    print(batch)

以上是制作PyTorch的dataloader的简单步骤,根据实际需求可以进行更复杂的操作,如数据增强、并行读取等。

5.已经分类的文件生成标注文件

假设你已经将所有的图片按照类别分别放到了十个文件夹中,可以使用以下代码生成标注文件:

复制代码
import os
# 定义图片所在的文件夹路径和标注文件的路径
img_dir = '/path/to/image/directory'
ann_file = '/path/to/annotation/file.txt'
# 遍历每个类别文件夹中的图片,将标注信息写入到标注文件中
with open(ann_file, 'w') as f:
    for class_id in range(1, 11):
        class_dir = os.path.join(img_dir, 'class{}'.format(class_id))
        for filename in os.listdir(class_dir):
            if filename.endswith('.jpg'):
                # 写入图片的文件名和类别
                f.write('{} {}\n'.format(filename, class_id))
相关推荐
KKKlucifer5 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
程序员的世界你不懂9 分钟前
Appium+python自动化(十)- 元素定位
python·appium·自动化
DisonTangor41 分钟前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
CryptoPP1 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链
树叶@1 小时前
Python数据分析7
开发语言·python
老胖闲聊2 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
码界奇点2 小时前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11
浠寒AI2 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习