PyTorch的dataloader制作自定义数据集

PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割成小batch,并在训练过程中进行数据预处理。以下是制作PyTorch的dataloader的简单步骤:

  1. 导入必要的库

    import torch
    from torch.utils.data import DataLoader, Dataset

  2. 定义数据集类 需要自定义一个继承自torch.utils.data.Dataset的类,在该类中实现__len____getitem__方法。

    class MyDataset(Dataset):
    def init(self, data):
    self.data = data

    复制代码
     def __len__(self):
         return len(self.data)
     
     def __getitem__(self, index):
         # 返回第index个数据样本
         return self.data[index]
  3. 创建数据集实例

    data = [1, 2, 3, 4, 5]
    dataset = MyDataset(data)

  4. 创建dataloader实例

使用torch.utils.data.DataLoader创建dataloader实例,可以设置batch_sizeshuffle等参数。

复制代码
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
  1. 使用dataloader读取数据

    for batch in dataloader:
    # batch为一个batch的数据,可以直接用于训练
    print(batch)

以上是制作PyTorch的dataloader的简单步骤,根据实际需求可以进行更复杂的操作,如数据增强、并行读取等。

5.已经分类的文件生成标注文件

假设你已经将所有的图片按照类别分别放到了十个文件夹中,可以使用以下代码生成标注文件:

复制代码
import os
# 定义图片所在的文件夹路径和标注文件的路径
img_dir = '/path/to/image/directory'
ann_file = '/path/to/annotation/file.txt'
# 遍历每个类别文件夹中的图片,将标注信息写入到标注文件中
with open(ann_file, 'w') as f:
    for class_id in range(1, 11):
        class_dir = os.path.join(img_dir, 'class{}'.format(class_id))
        for filename in os.listdir(class_dir):
            if filename.endswith('.jpg'):
                # 写入图片的文件名和类别
                f.write('{} {}\n'.format(filename, class_id))
相关推荐
别让别人觉得你做不到33 分钟前
Python(1) 做一个随机数的游戏
python
feng995201 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681652 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..2 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
小彭律师2 小时前
人脸识别门禁系统技术文档
python
富唯智能2 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航3 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux3 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI3 小时前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison3 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络