Spark之搭建Yarn模式

Spark on YARN(Yet Another Resource Negotiator)是 Spark 框架在 Hadoop 集群中运行的一种部署模式,它借助 Hadoop YARN 来管理资源和调度任务。

架构组成:

ResourceManager:作为 YARN 的核心,负责整个集群的资源管理和调度。它会接收来自各个应用程序的资源请求,并根据集群资源的使用情况进行合理分配。
NodeManager:部署在集群中的每个节点上,负责管理该节点上的资源使用情况,监控容器的运行状态,并且与 ResourceManager 保持通信,汇报节点的资源使用信息。

ApplicationMaster:在 Spark 应用启动时,YARN 会为其分配一个 ApplicationMaster。它的主要职责是向 ResourceManager 申请资源,并且与 NodeManager 协作,启动和管理 Spark 的 Executor 进程。

Spark Driver:负责执行用户编写的 Spark 应用程序代码,将其转化为一系列的任务,并调度这些任务到各个 Executor 上执行。

Executor:运行在 NodeManager 管理的容器中,负责具体执行 Spark 任务,并将执行结果返回给 Driver。
1.上传并解压spark-3.1.2-bin-hadoop3.2.tgz,重命名解压之后的目录为spark-yarn。对应的命令是:tar -zxvf spark-3.3.1-bin-hadoop3.tgz -C /opt/module


2. 修改一下spark的环境变量,/etc/profile.d/my_env.sh 。


3.修改hadoop的配置。/opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml。因为测试环境虚拟机内存较少,防止执行过程进行被意外杀死,添加如下配置。


使用xsync /opt/module/hadoop-3.1.3/etc/hadoop/同步一下。
4.修改spark配置。 把三个文件的名字重新设置一下:

workers.tempalte 改成 workers,spark-env.sh.template 改成 spark-env.sh,

spark-defaults.conf.template 改成 spark-defaults.conf。
5.然后,在workers文件中添加:


在spark-env.sh文件中,添加如下:


在spark-defaults.conf文件中,添加如下:

6.同步配置文件到其他设备。xsync /opt/module/spark-yarn/sbin

相关推荐
辰宇信息咨询3 小时前
3D自动光学检测(AOI)市场调研报告-发展趋势、机遇及竞争分析
大数据·数据分析
珠海西格5 小时前
“主动预防” vs “事后补救”:分布式光伏防逆流技术的代际革命,西格电力给出标准答案
大数据·运维·服务器·分布式·云计算·能源
创客匠人老蒋5 小时前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
2501_948120155 小时前
基于大数据的泄漏仪设备监控系统
大数据
Spey_Events6 小时前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
AC赳赳老秦7 小时前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
GeeLark7 小时前
#请输入你的标签内容
大数据·人工智能·自动化
小邓吖7 小时前
自己做了一个工具网站
前端·分布式·后端·中间件·架构·golang
智能相对论8 小时前
2万台?九识无人车车队规模靠谱吗?
大数据
小小王app小程序开发9 小时前
淘宝扭蛋机小程序核心玩法拆解与技术运营分析
大数据·小程序