分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现
目录
分类效果
基本描述
1.Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断,运行环境Matlab2023b及以上;
2.excel数据,方便替换,可在下载区获取数据和程序内容。
3.优化参数为注意力机制头数、学习率、正则化系数,图很多,包括分类效果图,混淆矩阵图,指标含召回率、精确率、F1分数、灵敏度、特异性、曲线下面积等。
4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。
6.data为数据集,输入多个特征,分四类,分类效果如下:
注:程序和数据放在一个文件夹

程序设计
- 完整程序和数据私信博主回复Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断。
clike
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 读取数据
res = xlsread('data.xlsx');
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
end
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx'); % 四个类别分别用0 1 2 3表示
rand('state',0);
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
%% 矩阵转置
p_train = P_train'; p_test = P_test';
t_train = T_train'; t_test = T_test';
参考资料
1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229