# 2-STM32F103-复位和时钟控制RCC

STM32-复位和时钟控制RCC

  • 2-STM32-复位和时钟控制RCC
  • 摘要
  • 说明
    • 本文参考资料如下:
  • 一、STM32最小系统回顾
    • STM32F103C8T6核心板原理图
  • 二、复位
  • 三、时钟
    • 3.1 时钟树
    • 3.2 STM32启动过程
    • 3.2 SystemInit()函数
      • 3.2.1 SystemInit()第1句:
      • 3.2.2 SystemInit()第2句:
      • 3.2.3 SystemInit()第3句:
    • 3.3 SetSysClock()函数:
    • 3.4 SetSysClockTo72()函数:
      • 3.4.1 SetSysClockTo72()第1句:
      • 3.4.2 SetSysClockTo72()第2句:
      • 3.4.3 SetSysClockTo72()第3句:
      • 3.4.4 SetSysClockTo72()第4句:
      • 3.4.5 SetSysClockTo72()第5句:
      • 3.4.6 SetSysClockTo72()第6句:
      • 3.4.7 SetSysClockTo72()第7句:
  • 四、标准库与HAL库区别
    • 4.1 HAL库SystemInit()函数
    • 4.1 HAL库配置系统时钟为72MHz函数
      • 4.1.1 Stm32_Clock_Init函数
    • 4.1 HAL库配置系统时钟为72MHz函数
  • 五、总结
  • 六、资料连接

2-STM32-复位和时钟控制RCC

摘要

在上一篇文章中,我们讲解了STM32F103C8T6最小系统中复位和时钟硬件部分 ,在本章中讲解最小系统中的复位和时钟的软件部分 。本文章根据《1-STM32F10x-中文参考手册》的第6节复位和时钟为依据,并介绍时钟源选择外部8MHz晶震HSE,通过SystemInit()函数将STM32时钟配置为72HMz的代码,并在最后对比标准库和HAL库对时钟配置的不同。

说明

本系列,将整理STM32F103内置外设的使用,"基于标准库"进行学习开发,并将手册说明与标准库代码进行对应学习,在文章最后提供本系列中参考的文章和工程代码下载链接。

本文参考资料如下:

markdown 复制代码
## 1.硬件平台
STM32F103C8T6最小系统板
## 2.软件平台
MDK5
## 3.参考文档
1.《1-STM32F10x-中文参考手册》
2.《3-STM32F103xCDE数据手册-中文》
3. 《STM32F103C8T6核心板原理图》
4.《Cortex-M3权威指南》

一、STM32最小系统回顾

在上一节STM32最小系统中,讲解了STM32最小系统由:电源、时钟、下载、复位、启动 五个部分组成,本文主要讲解时钟和复位两个部分,因为这两个部分和后续编程紧密相连,而电源、下载、启动三个部分相对固定,编程上不需要太多改动。

STM32F103C8T6核心板原理图

图中标红的两个部分,时钟和复位就是本文要讲述的部分。复位使用NRST引脚复位 ,时钟使用外部晶体震荡器HSE

二、复位

由《1-STM32F10x-中文参考手册》的第6节复位和时钟可知,STM32复位方式有三类:系统复位、上电复位、备份区域复位 ,其中系统复位包含了:NRST引脚复位

由系统复位方式可知:一共有5种复位方式,STM32最小系统中的复位就是NRST引脚复位,是硬件复位方式,也是最常用的一种复位方式。其余四种都是软件复位,IWDG、WWDG、SW三种复位方式,在后续看门狗实验时讲解。低功耗复位在低功耗实验时讲解。

三、时钟

根据《1-STM32F10x-中文参考手册》的第6节时钟部分可知,STM32F103有5种时钟源,但是系统时钟源SYSCLK只有三种选择,HSE、HSI、PLL,LSI和LSE两种低速时钟是提供给RTC和IWDG使用。其中HSE和LSE是需要我们自己外接晶振的,HSI和LSI是STM32F103C8T6内置的,PLL是取自HSE或HSI。由于HSI不精确,所以为了系统时钟SYSCLK能达到72MHz,我们只能选择HSE。如果没有外接HSE的话,单片机会自动使用内部8MHz的HSI作为系统时钟SYSCLK,此时系统时钟就只有8MHz,且不精确。

3.1 时钟树

时钟树是《1-STM32F10x-中文参考手册》的第6节时钟 的图,此图介绍了5种时钟源是如何提供给单片机内部其它外设的,我们本文主要关心图中红色线:通过外接8MHz晶振,并通过倍频器PLL进行9倍放大后,得到72MHz的系统时钟SYSCLK的过程。外接8MHz晶振我们在STM32最小系统中,我们已经连接了时钟电路,即已经接好了外部8MHz晶振,接下来我们通过SystemInit()函数 配置RCC的时钟控制寄存器CR和时钟配置寄存器CFGR,将SYSCLK配置为72MHz。

注:图中梯形表示选择器,矩形表示执行器。

3.2 STM32启动过程

单片机上电后第一行执行的代码是汇编文件startup_stm32f10x_md.s中的Reset_Handler标签,然后执行SystemInit()后才执行main()。所以在执行我们的main()函数之前,单片机会执行SystemInit()函数将单片机时钟配置为72MHz。

Assembly 复制代码
; Reset handler
Reset_Handler    PROC
                 EXPORT  Reset_Handler             [WEAK]
     IMPORT  __main
     IMPORT  SystemInit
                 LDR     R0, =SystemInit
                 BLX     R0
                 LDR     R0, =__main
                 BX      R0
                 ENDP

3.2 SystemInit()函数

在SystemInit()函数中会调用SetSysClock()--->>SetSysClockTo72(),SetSysClockTo72()执行完后STM32系统时钟为72MHz,是8MHz外部高速晶振HSE通过PLL进行9倍频后得到。

C 复制代码
void SystemInit (void)
{
  /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
  RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
  RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */   
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF;

#ifdef STM32F10X_CL
  /* Reset PLL2ON and PLL3ON bits */
  RCC->CR &= (uint32_t)0xEBFFFFFF;

  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x00FF0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;      
#else
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */
    
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
  #ifdef DATA_IN_ExtSRAM
    SystemInit_ExtMemCtl(); 
  #endif /* DATA_IN_ExtSRAM */
#endif 

  /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
  /* Configure the Flash Latency cycles and enable prefetch buffer */
  SetSysClock();

#ifdef VECT_TAB_SRAM
  SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
  SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif 
}

3.2.1 SystemInit()第1句:

C 复制代码
  /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

这一行通过位或运算,将RCC->CR寄存器最低位置1,开启HSI时钟。这一句其实我感觉不要也是可以的,因为手册中CR寄存器复位值是0x0000 xx83,即HSION默认值就是1。

3.2.2 SystemInit()第2句:

C 复制代码
  /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
  RCC->CFGR &= (uint32_t)0xF8FF0000;

其中#ifndef STM32F10X_CL条件成立,因为在STM32F103C8T6标准库中,并没有定义这个宏,因此执行RCC->CFGR &= (uint32_t)0xF8FF0000;正如备注所示是复位SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits。对照时钟复位寄存器CFGR中说明,0x00转化二进制是0000 0000,即SW[1:0]被置为00,HPRE[3:0]被置为0000,PPRE1[2:0]被置为000,PPRE2[2:0]被置为000,ADCPRE[1:0]被置为00。0xF8转为二进制是1111 1000,即MCO[2:0]被置为000。

3.2.3 SystemInit()第3句:

C 复制代码
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF;

这三句和备注一样,对应查看CR寄存器和CFGR寄存器对应位说明,将右边的16进制数转化位二进制后对应查看。

3.3 SetSysClock()函数:

C 复制代码
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSE
  SetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHz
  SetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHz
  SetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHz
  SetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHz
  SetSysClockTo56();  
#elif defined SYSCLK_FREQ_72MHz
  SetSysClockTo72();
#endif
 /* If none of the define above is enabled, the HSI is used as System clock
    source (default after reset) */ 
}

在system_stm32F10x.c的115行定义了宏SYSCLK_FREQ_72MHz,所以会执行 SetSysClockTo72()。

3.4 SetSysClockTo72()函数:

C 复制代码
static void SetSysClockTo72(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* Enable HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }  

  if (HSEStatus == (uint32_t)0x01)
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL
    /* Configure PLLs ------------------------------------------------------*/
    /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
    /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
        
    RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
                              RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
    RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
                             RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
  
    /* Enable PLL2 */
    RCC->CR |= RCC_CR_PLL2ON;
    /* Wait till PLL2 is ready */
    while((RCC->CR & RCC_CR_PLL2RDY) == 0)
    {
    }
    
   
    /* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ 
    RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | 
                            RCC_CFGR_PLLMULL9); 
#else    
    /*  PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
                                        RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL */

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
  }
}

在SetSysClockTo72()函数中,开启了HSE,并配置了PLL进行9倍频,然后将SYSCLK配置为72MHz。

3.4.1 SetSysClockTo72()第1句:

C 复制代码
  /* Enable HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);

时钟控制寄存器CR的bit16是HSEON,将这一位置1,即可开启外部高速时钟HSE。通过按F12跳转到定义发现,在stm32f10x.h中RCC_CR_HSEON定义如下,转换成二进制后,刚好是bit16为1,通过位或运算"|="将bit16置1,而其它位不变。

C 复制代码
#define  RCC_CR_HSEON                        ((uint32_t)0x00010000)        /*!< External High Speed clock enable */

3.4.2 SetSysClockTo72()第2句:

C 复制代码
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }

等待HSE稳定,并设置超时时间HSE_STARTUP_TIMEOUT,HSE稳定后将HSEStatus标志位置1,然后进行后续配置,如果失败置为0,默认使用8MHz的HSI作为系统时钟。

3.4.3 SetSysClockTo72()第3句:

C 复制代码
  if (HSEStatus == (uint32_t)0x01)
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

这几句是配置FLASH的等待周期的,详情需要查看《STM32F10xxx闪存编程手册》。

3.4.4 SetSysClockTo72()第4句:

C 复制代码
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

这三句配置三条总线HCLK、PCLK2和PCLK1的时钟频率。即将PCLK2=HCLK = SYSCLK,PCLK1=HCLK/2。此时SYSCLK还不是72MHz,因为还没有配置PLL进行9倍频。

3.4.5 SetSysClockTo72()第5句:

C 复制代码
    /*  PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
                                        RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);

这两句将PLL配置为对HSE进行9倍频。此时PLL时钟为72MHz。

3.4.6 SetSysClockTo72()第6句:

C 复制代码
    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
    {
    }

这几句是开启PLL时钟,并将其作为SYSCLK时钟源,等待PLL时钟稳定后,即可退出。此时SYSCLK为72MHz,PCLK2=HCLK = SYSCLK=72MHz,PCLK1=HCLK/2=36MHz。

3.4.7 SetSysClockTo72()第7句:

C 复制代码
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
  }

此段代码是 如果HSE初始化失败,那么默认使用HSI作为SYSCLK时钟,我们也可以在此处进行我们自己的处理,但是通常都不会进行处理。

四、标准库与HAL库区别

共同点 :单片机上电后会立即执行启动文件中的Reset_Handler标签,然后调用SystemInit()函数。
不同点:SystemInit()函数实现不一样,HAL库中SystemInit()函数不会调用 SetSysClock()将系统时钟初始化为72MHz,而是需要我们在main()函数中自己初始化为72Mhz。

4.1 HAL库SystemInit()函数

C 复制代码
void SystemInit (void)
{
  /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#if !defined(STM32F105xC) && !defined(STM32F107xC)
  RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
  RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F105xC */   
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF;

#if defined(STM32F105xC) || defined(STM32F107xC)
  /* Reset PLL2ON and PLL3ON bits */
  RCC->CR &= (uint32_t)0xEBFFFFFF;

  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x00FF0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;
#elif defined(STM32F100xB) || defined(STM32F100xE)
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;      
#else
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;
#endif /* STM32F105xC */
    
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
  #ifdef DATA_IN_ExtSRAM
    SystemInit_ExtMemCtl(); 
  #endif /* DATA_IN_ExtSRAM */
#endif 

#ifdef VECT_TAB_SRAM
  SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
  SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif 
}

最后没有调用 SetSysClock();也就不会调用 SetSysClockTo72();

4.1 HAL库配置系统时钟为72MHz函数

C 复制代码
int main(void)
{
    HAL_Init();                    	 	//初始化HAL库    
    Stm32_Clock_Init(RCC_PLL_MUL9);   	//设置时钟,72M
	while(1)
	{

	}
}

需要我们编写 Stm32_Clock_Init()函数。

4.1.1 Stm32_Clock_Init函数

4.1 HAL库配置系统时钟为72MHz函数

C 复制代码
void Stm32_Clock_Init(u32 PLL)
{
    HAL_StatusTypeDef ret = HAL_OK;
    RCC_OscInitTypeDef RCC_OscInitStructure; 
    RCC_ClkInitTypeDef RCC_ClkInitStructure;
    
    RCC_OscInitStructure.OscillatorType=RCC_OSCILLATORTYPE_HSE;    	//时钟源为HSE
    RCC_OscInitStructure.HSEState=RCC_HSE_ON;                      	//打开HSE
	RCC_OscInitStructure.HSEPredivValue=RCC_HSE_PREDIV_DIV1;		//HSE预分频
    RCC_OscInitStructure.PLL.PLLState=RCC_PLL_ON;					//打开PLL
    RCC_OscInitStructure.PLL.PLLSource=RCC_PLLSOURCE_HSE;			//PLL时钟源选择HSE
    RCC_OscInitStructure.PLL.PLLMUL=PLL; 							//主PLL倍频因子
    ret=HAL_RCC_OscConfig(&RCC_OscInitStructure);//初始化
	
    if(ret!=HAL_OK) while(1);
    
    //选中PLL作为系统时钟源并且配置HCLK,PCLK1和PCLK2
    RCC_ClkInitStructure.ClockType=(RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStructure.SYSCLKSource=RCC_SYSCLKSOURCE_PLLCLK;		//设置系统时钟时钟源为PLL
    RCC_ClkInitStructure.AHBCLKDivider=RCC_SYSCLK_DIV1;				//AHB分频系数为1
    RCC_ClkInitStructure.APB1CLKDivider=RCC_HCLK_DIV2; 				//APB1分频系数为2
    RCC_ClkInitStructure.APB2CLKDivider=RCC_HCLK_DIV1; 				//APB2分频系数为1
    ret=HAL_RCC_ClockConfig(&RCC_ClkInitStructure,FLASH_LATENCY_2);	//同时设置FLASH延时周期为2WS,也就是3个CPU周期。
		
    if(ret!=HAL_OK) while(1);
}

调用HAL库HAL_RCC_ClockConfig()函数实现将SYSCLK配置为72MHz。

五、总结

通过标准库和HAL库对比,将STM32系统时钟SYSCLK配置为72MHz既可以在main()函数之前,也可以在main()函数里面,即在使用其它片上外设之前都可以。虽然标准库和HAL库调用的库函数不一样,但是最底层都是配置的RCC的CR和CFGR寄存器,只是封装不同而已,所以我们得熟悉手册对RCC使用的说明,再结合标准库和HAL库进行学习,才能理解得更加透彻。

六、资料连接

https://gitee.com/muzi_wood/stm32-f103

相关推荐
small_wh1te_coder5 小时前
从经典力扣题发掘DFS与记忆化搜索的本质 -从矩阵最长递增路径入手 一步步探究dfs思维优化与编程深度思考
c语言·数据结构·c++·stm32·算法·leetcode·深度优先
WKJay_6 小时前
深入理解 Cortex-M3 特殊寄存器
stm32·单片机·嵌入式硬件
小智学长 | 嵌入式9 小时前
单片机-STM32部分:13-1、编码器
单片机·嵌入式硬件
暗碳10 小时前
WF24 wifi/蓝牙模块串口与手机蓝牙通信
嵌入式硬件
#金毛11 小时前
一、HAL库的设计理念详解:从架构到实践
stm32·嵌入式硬件·架构
alive90312 小时前
STM32移植LVGL8.3 (保姆级图文教程)
stm32·单片机·嵌入式硬件·stm32f407·lvgl8.3·lvgl移植
Camellia031114 小时前
嵌入式学习--江协51单片机day6
嵌入式硬件·学习·51单片机
外星猪猪14 小时前
嵌入式调试新宠!J-Scope:免费+实时数据可视化,让MCU调试效率飙升!
单片机·嵌入式硬件·信息可视化
霖0014 小时前
PCIe数据采集系统
数据结构·经验分享·单片机·嵌入式硬件·fpga开发·信号处理