语音识别——声纹识别

通过将说话人的声音与数据库中的记录声音进行比对,判断说话人是否为数据库白名单中的同一人,从而完成语音验证。目前,3D-Speaker 声纹验证的效果较为出色。

3D-Speaker 是一个开源工具包,可用于单模态和多模态的说话人验证、说话人识别以及说话人日志分割

模型使用方法如下:

python 复制代码
# 声纹识别测试
# 采样率要为16k

from modelscope.pipelines import pipeline
sv_pipeline = pipeline(
    task='speaker-verification',
    model=r'D:\Downloads\speech_campplus_sv_zh-cn_3dspeaker_16k'
)
speaker1_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_a_cn_16k.wav'
speaker1_b_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_b_cn_16k.wav'
speaker2_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker2_a_cn_16k.wav'

# speaker1_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording.wav'
# speaker1_b_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_1.wav'
# speaker2_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_2.wav'


# 相同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker1_b_wav])
print(result)
# 不同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav])
print(result)
# 可以自定义得分阈值来进行识别
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], thr=0.6)
print(result)
相关推荐
AI_Auto5 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻5 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood5 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头5 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs6 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding6 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊7 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德7 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算7 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn7 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap