语音识别——声纹识别

通过将说话人的声音与数据库中的记录声音进行比对,判断说话人是否为数据库白名单中的同一人,从而完成语音验证。目前,3D-Speaker 声纹验证的效果较为出色。

3D-Speaker 是一个开源工具包,可用于单模态和多模态的说话人验证、说话人识别以及说话人日志分割

模型使用方法如下:

python 复制代码
# 声纹识别测试
# 采样率要为16k

from modelscope.pipelines import pipeline
sv_pipeline = pipeline(
    task='speaker-verification',
    model=r'D:\Downloads\speech_campplus_sv_zh-cn_3dspeaker_16k'
)
speaker1_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_a_cn_16k.wav'
speaker1_b_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_b_cn_16k.wav'
speaker2_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker2_a_cn_16k.wav'

# speaker1_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording.wav'
# speaker1_b_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_1.wav'
# speaker2_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_2.wav'


# 相同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker1_b_wav])
print(result)
# 不同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav])
print(result)
# 可以自定义得分阈值来进行识别
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], thr=0.6)
print(result)
相关推荐
老赵聊算法、大模型备案几秒前
《人工智能拟人化互动服务管理暂行办法(征求意见稿)》深度解读:AI“拟人”时代迎来首个专项监管框架
人工智能·算法·安全·aigc
亚马逊云开发者10 分钟前
使用 Kiro AI IDE 开发 Amazon CDK 部署架构:从模糊需求到三层堆栈的协作实战
人工智能
心无旁骛~12 分钟前
ModelEngine Nexent 智能体从创建到部署全流程深度体验:自动化利器让 AI 开发效率拉满!
运维·人工智能·自动化
老徐电商数据笔记16 分钟前
数据仓库工程师在AI时代的走向探究
数据仓库·人工智能
小鸡吃米…20 分钟前
机器学习——生命周期
人工智能·python·机器学习
hzp66624 分钟前
GhostCache 的新型缓存侧信道攻击
人工智能·黑客·网络攻击·ghostcache
mubei-12324 分钟前
TF-IDF / BM25:经典的传统信息检索算法
人工智能·检索算法
databook29 分钟前
回归分析全家桶(16种回归模型实现方式总结)
人工智能·python·机器学习
天竺鼠不该去劝架30 分钟前
传统财务管理瓶颈:财务机器人如何提升效率
大数据·数据库·人工智能
zhongerzixunshi36 分钟前
“首版次高端软件”:国产工业软件皇冠上的明珠
人工智能·云计算