语音识别——声纹识别

通过将说话人的声音与数据库中的记录声音进行比对,判断说话人是否为数据库白名单中的同一人,从而完成语音验证。目前,3D-Speaker 声纹验证的效果较为出色。

3D-Speaker 是一个开源工具包,可用于单模态和多模态的说话人验证、说话人识别以及说话人日志分割

模型使用方法如下:

python 复制代码
# 声纹识别测试
# 采样率要为16k

from modelscope.pipelines import pipeline
sv_pipeline = pipeline(
    task='speaker-verification',
    model=r'D:\Downloads\speech_campplus_sv_zh-cn_3dspeaker_16k'
)
speaker1_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_a_cn_16k.wav'
speaker1_b_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker1_b_cn_16k.wav'
speaker2_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_3dspeaker_16k/repo?Revision=master&FilePath=examples/speaker2_a_cn_16k.wav'

# speaker1_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording.wav'
# speaker1_b_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_1.wav'
# speaker2_a_wav = r'D:\Downloads\ASR-LLM-TTS-master\ASR-LLM-TTS-master\my_recording_2.wav'


# 相同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker1_b_wav])
print(result)
# 不同说话人语音
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav])
print(result)
# 可以自定义得分阈值来进行识别
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], thr=0.6)
print(result)
相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子6 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor