深度学习-最简单的Demo-直接运行

根据动手学深度学习第一个最简单的Demo,通过此demo旨在了解深度学习都干了什么事情,为什么要做这些事情,便于后续理解更加复杂的神经网络训练

python 复制代码
import torch
import random

def synthetic_data(w, b, num_examples):
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        random_index = indices[i:min(i + batch_size, num_examples)]
        batch_indices = torch.tensor(random_index)
        yield features[batch_indices], lables[batch_indices]

def linreg(X, w, b):
    return torch.matmul(X, w) + b

def squared_loss(y_hat, y):
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

true_w = torch.tensor([2, -3.4])
true_b = 4.3
batch_size = 10
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
features, lables = synthetic_data(true_w, true_b, 1000)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, lables):
        l = loss(net(X, w, b), y)
        l.sum().backward()
        sgd([w, b], lr, batch_size)
    
    with torch.no_grad():
        train_l = loss(net(features, w, b), lables)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}', f'w={w}, b={b}')

结果:

python 复制代码
epoch 1, loss 0.042685 w=tensor([[ 1.8874],
        [-3.2286]], requires_grad=True), b=tensor([4.0865], requires_grad=True)
epoch 2, loss 0.000169 w=tensor([[ 1.9937],
        [-3.3907]], requires_grad=True), b=tensor([4.2893], requires_grad=True)
epoch 3, loss 0.000054 w=tensor([[ 2.0000],
        [-3.3992]], requires_grad=True), b=tensor([4.2994], requires_grad=True)

能看到,最者不断的训练,模型的参数,逐渐靠近我们模拟数据集的原始参数。

相关推荐
且慢.58911 分钟前
Python_day47
python·深度学习·计算机视觉
大写-凌祁28 分钟前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号39 分钟前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM41 分钟前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
IT_陈寒1 小时前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin1 小时前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
&永恒的星河&1 小时前
基于TarNet、CFRNet与DragonNet的深度因果推断模型全解析
深度学习·因果推断·cfrnet·tarnet·dragonnet
盛寒1 小时前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_177297220691 小时前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网
Jay Kay2 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归