深度学习-最简单的Demo-直接运行

根据动手学深度学习第一个最简单的Demo,通过此demo旨在了解深度学习都干了什么事情,为什么要做这些事情,便于后续理解更加复杂的神经网络训练

python 复制代码
import torch
import random

def synthetic_data(w, b, num_examples):
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        random_index = indices[i:min(i + batch_size, num_examples)]
        batch_indices = torch.tensor(random_index)
        yield features[batch_indices], lables[batch_indices]

def linreg(X, w, b):
    return torch.matmul(X, w) + b

def squared_loss(y_hat, y):
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

true_w = torch.tensor([2, -3.4])
true_b = 4.3
batch_size = 10
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
features, lables = synthetic_data(true_w, true_b, 1000)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, lables):
        l = loss(net(X, w, b), y)
        l.sum().backward()
        sgd([w, b], lr, batch_size)
    
    with torch.no_grad():
        train_l = loss(net(features, w, b), lables)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}', f'w={w}, b={b}')

结果:

python 复制代码
epoch 1, loss 0.042685 w=tensor([[ 1.8874],
        [-3.2286]], requires_grad=True), b=tensor([4.0865], requires_grad=True)
epoch 2, loss 0.000169 w=tensor([[ 1.9937],
        [-3.3907]], requires_grad=True), b=tensor([4.2893], requires_grad=True)
epoch 3, loss 0.000054 w=tensor([[ 2.0000],
        [-3.3992]], requires_grad=True), b=tensor([4.2994], requires_grad=True)

能看到,最者不断的训练,模型的参数,逐渐靠近我们模拟数据集的原始参数。

相关推荐
HUIMU_13 分钟前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
致Great34 分钟前
DeepResearch开源与闭源方案对比
人工智能·chatgpt
黎燃1 小时前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享1 小时前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin1 小时前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.8241 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚2 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI2 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
Coovally AI模型快速验证2 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机