深度学习-最简单的Demo-直接运行

根据动手学深度学习第一个最简单的Demo,通过此demo旨在了解深度学习都干了什么事情,为什么要做这些事情,便于后续理解更加复杂的神经网络训练

python 复制代码
import torch
import random

def synthetic_data(w, b, num_examples):
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        random_index = indices[i:min(i + batch_size, num_examples)]
        batch_indices = torch.tensor(random_index)
        yield features[batch_indices], lables[batch_indices]

def linreg(X, w, b):
    return torch.matmul(X, w) + b

def squared_loss(y_hat, y):
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

true_w = torch.tensor([2, -3.4])
true_b = 4.3
batch_size = 10
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
features, lables = synthetic_data(true_w, true_b, 1000)
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, lables):
        l = loss(net(X, w, b), y)
        l.sum().backward()
        sgd([w, b], lr, batch_size)
    
    with torch.no_grad():
        train_l = loss(net(features, w, b), lables)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}', f'w={w}, b={b}')

结果:

python 复制代码
epoch 1, loss 0.042685 w=tensor([[ 1.8874],
        [-3.2286]], requires_grad=True), b=tensor([4.0865], requires_grad=True)
epoch 2, loss 0.000169 w=tensor([[ 1.9937],
        [-3.3907]], requires_grad=True), b=tensor([4.2893], requires_grad=True)
epoch 3, loss 0.000054 w=tensor([[ 2.0000],
        [-3.3992]], requires_grad=True), b=tensor([4.2994], requires_grad=True)

能看到,最者不断的训练,模型的参数,逐渐靠近我们模拟数据集的原始参数。

相关推荐
UnderTurrets2 分钟前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3645 分钟前
pytorch深度学习笔记13
pytorch·笔记·深度学习
黄焖鸡能干四碗5 分钟前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
高洁017 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
世岩清上12 分钟前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅
工藤学编程41 分钟前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生1 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域1 小时前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi9878381 小时前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi1 小时前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能