Flink SQL、Hudi 、Doris在数据上的组合应用

Flink SQL、Hudi 和 Doris 是大数据领域中不同定位的技术组件,各自解决不同的问题,以下从核心定位、关键特性和典型场景三个维度展开说明:

核心定位:Flink 是 Apache 顶级的流批一体化计算引擎,Flink SQL 是其提供的 SQL 接口,支持用 SQL 语法实现实时数据处理(如实时 ETL、实时聚合、实时报表等),并支持流(实时)和批(历史)数据的统一处理。

关键特性

  • 流批统一:同一套 SQL 语法可处理实时流数据(无界数据)和批量离线数据(有界数据),底层通过相同的执行引擎实现。
  • 低延迟高吞吐:基于事件时间(Event Time)和水位线(Watermark)机制,支持毫秒级延迟的实时计算。
  • 状态管理:支持复杂的状态计算(如窗口聚合、会话分析),并通过检查点(Checkpoint)保障故障恢复能力。
  • 生态兼容:支持对接 Kafka、Hive、JDBC 等数据源 / 库,可与 Hudi、Doris 等存储层集成。

典型场景

  • 实时大屏(如电商实时 GMV、用户行为实时统计);
  • 实时 ETL(将 Kafka 流数据清洗后写入 Hudi/Doris);
  • 实时数仓分层(基于流计算构建 ODS→DWD→DWS 层)。

2. Hudi:数据湖的存储与管理框架

核心定位 :Hudi(Hadoop Upserts Deletes and Incrementals)是 Apache 顶级项目,专注于解决数据湖(如基于 HDFS、S3 的存储)的增量更新、版本管理、ACID 事务等问题,使数据湖具备类似关系型数据库的能力。

关键特性

  • ACID 事务:支持写入时的行级更新 / 删除(Upsert/Delete),避免全量重写,适合实时数据入湖场景。
  • 增量处理 :通过记录数据变更(如 _hoodie_commit_time 元数据),支持基于时间戳的增量查询(如 Flink/Spark 读取 Hudi 增量数据)。
  • 多存储格式:支持 Parquet(列存,适合分析)和 Avro(行存,适合高频更新),可根据场景选择。
  • 版本管理:支持数据的时间旅行(Time Travel),可回滚到任意历史版本。

典型场景

  • 实时数据入湖(如将 Kafka 实时数据通过 Flink 写入 Hudi,支持后续实时分析);
  • 数据湖的更新 / 删除需求(传统数据湖仅支持追加写,Hudi 解决了这一痛点);
  • 湖仓一体(Hudi 作为存储层,向上对接 Flink、Spark 计算引擎,向下对接 Hive、Doris 等分析系统)。

3. Doris:高性能 OLAP 分析数据库

核心定位 :Doris(原百度 Palo)是一款 MPP(大规模并行处理)架构的OLAP 数据库,专注于解决高并发、低延迟的复杂查询需求(如多维聚合、即席查询),适合构建企业级数据分析平台。

关键特性

  • MPP 架构:支持分布式并行计算,通过分库分表(Range/Hash 分区)和本地计算(数据本地化)提升查询效率。
  • 向量化执行:基于向量化引擎优化,大幅提升复杂查询(如 JOIN、聚合)的速度。
  • 实时写入:支持高并发的实时数据导入(如通过 Spark、Flink 写入),且写入后可立即查询(秒级延迟)。
  • 多查询模式:支持 SQL 接口,兼容 MySQL 协议,可直接通过 BI 工具(如 Tableau、PowerBI)对接。

典型场景

  • 企业级 BI 分析(如销售报表、用户画像分析);
  • 即席查询(Ad-hoc Query,业务人员临时发起的复杂查询);
  • 实时数据展示(如结合 Flink 实时计算结果,写入 Doris 后通过前端展示)。

三者对比与协同

维度 Flink SQL Hudi Doris
核心价值 实时计算能力 数据湖存储与增量管理 高性能 OLAP 查询
数据形态 流 / 批计算(无存储) 存储层(数据湖) 存储 + 计算(分析数据库)
延迟要求 毫秒级(实时) 秒级(写入后可查询) 毫秒 - 秒级(查询)
典型协同 作为计算引擎,将实时数据写入 Hudi/Doris 作为存储层,供 Flink/Spark 计算,或同步至 Doris 作为查询层,承接 Flink 计算结果或 Hudi 数据同步

总结

  • 若需实时计算(如实时聚合、实时 ETL),选 Flink SQL;
  • 若需数据湖的增量更新与版本管理(如实时数据入湖、湖仓一体),选 Hudi;
  • 若需高性能 OLAP 查询 (如 BI 报表、即席分析),选 Doris。
    实际场景中,三者常协同使用(如:Flink SQL 实时处理 Kafka 数据 → 写入 Hudi 存储 → 同步至 Doris 供业务查询)。
相关推荐
东哥说-MES|从入门到精通1 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界2 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿3 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库
pale_moonlight3 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
第二只羽毛4 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
Elastic 中国社区官方博客4 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
安达发公司5 小时前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
武子康5 小时前
大数据-166 Apache Kylin 1.6 Streaming Cubing 实战:Kafka 到分钟级 OLAP
大数据·后端·apache kylin
啊吧怪不啊吧5 小时前
SQL之表的字符串内置函数详解
大数据·数据库·sql
亿坊电商6 小时前
24H-无人共享KTV:如何实现安全的自助服务?
大数据·物联网·安全