ChromaDB 向量库优化技巧实战

chroma 一步步使用

安装

bash 复制代码
# 安装chromadb
pip install chromadb,sentence_transformers

# 不启动服务会出现sock.connect(sa)TimeoutError: timed out
chroma run

服务启动后,您将看到类似以下输出:

建立连接

部署完成后,需要建立与Chroma服务的连接:

python 复制代码
import chromadb

# 创建了临时客户端。程序终止时,您提取的任何数据都会丢失
client = chromadb.Client()

创建向量集合

chroma连接若直接创建集合("Collection"(集合)是存储向量的基本单位,类似于关系型数据库中的表),会使用内置的嵌入模型all-MiniLM-L6-v2

python 复制代码
# 首先导入embedding模型
from chromadb.utils import embedding_functions



collection = chroma_client.create_collection(name="my_collection")
collection.add(
    documents=[
        "关于深度学习技术的文档",
        "关于的爱情小说文档"
    ],
    ids=["id1", "id2"]
)
print(collection)

chroma默认使用欧氏距离计算向量相似度

查询文档

Chroma提供多种查询方式,满足不同场景需求:

1. 基于ID查询

当你知道确切的文档ID时,可以直接查询:

python 复制代码
# 根据ID获取文档
result = collection.get(
    ids=["id1"]
)
2. 语义向量检索

RAG系统的核心功能是语义检索,基于查询与文档的语义相似度:

python 复制代码
# 语义检索
# Chroma 默认会返回 10 条结果。这里我们只添加了 2 个文档,因此我们设置n_results=2
results = collection.query(
    query_texts=["如何使用向量数据库?"],
    n_results=2
)
print(results)

工程中优化

混合检索

Chroma还支持将全文匹配与向量检索结合:

python 复制代码
# 全文匹配 + 向量检索
results = collection.query(
    query_texts=["检索技术的应用"],
    n_results=2,
    where_document={"$contains": "检索"},  # 文档必须包含"检索"一词
    include=["documents", "metadatas"]
)

Chroma支持将向量检索与元数据过滤结合,实现更精准的查询:

python 复制代码
# 元数据过滤 + 向量检索
results = collection.query(
    query_texts=["大语言模型的应用"],
    n_results=2,
    where={"topic": "llm"},  # 仅检索topic为llm的文档
    include=["documents", "metadatas"]
)

元数据过滤支持多种操作符:

  • 相等:{"field": value}
  • 不等:{"field": {"$ne": value}}
  • 大于/小于:{"field": {"$gt": value}}{"field": {"$lt": value}}
  • 范围:{"field": {"$gte": min_value, "$lte": max_value}}
  • 复合条件:{"$and": [condition1, condition2]}
调参:索引与性能优化

Chroma默认使用HNSW(分层可导航小世界图)作为向量索引算法,无需手动创建索引。但你可以通过元数据调整索引参数:

python 复制代码
# 创建集合时设置HNSW参数
collection = client.create_collection(
    name="optimized_collection",
    embedding_function=embedding_func,
    metadata={
        "hnsw:space": "cosine",       # 相似度度量方式
        "hnsw:M": 16,                 # 每个节点的最大连接数
        "hnsw:ef_construction": 200,  # 构建索引时的搜索宽度
        "hnsw:ef": 100                # 查询时的搜索宽度
    }
)

关键参数解释:

  • M:控制图的连接度,值越大精度越高但内存消耗也越大
  • ef_construction:影响索引质量,值越大精度越高但构建速度越慢
  • ef:影响查询精度和速度,值越大召回率越高但查询速度越慢
相关推荐
执笔论英雄5 分钟前
【RL】 kl loss
人工智能
BitaHub20247 分钟前
深度推理力量:用 DeepSeek V3.2 Speciale 打造自动数据分析系统
人工智能·deepseek
开放知识图谱9 分钟前
论文浅尝 | 图上生成:将大语言模型视为智能体与知识图谱以解决不完整知识图谱问答(EMNLP2024)
人工智能·语言模型·自然语言处理·知识图谱
珂朵莉MM12 分钟前
2025年睿抗机器人开发者大赛CAIP-编程技能赛-本科组(国赛)解题报告 | 珂学家
java·人工智能·算法·机器人·无人机
果粒蹬i14 分钟前
当CNN遇见Transformer:混合模型的特征可视化与融合攻略
人工智能·cnn·transformer
悟道心18 分钟前
8. 自然语言处理NLP -GPT
人工智能·gpt·自然语言处理
乐迪信息27 分钟前
乐迪信息:船体AI烟火检测,24小时火灾自动预警
人工智能·物联网·算法·目标检测·语音识别
且去填词29 分钟前
DeepSeek :基于 AST 与 AI 的遗留系统“手术刀”式治理方案
人工智能·自动化·llm·ast·agent·策略模式·deepseek
llilian_1632 分钟前
相位差测量仪 高精度相位计相位差测量仪的应用 相位计
大数据·人工智能·功能测试·单片机
云雾J视界32 分钟前
从Boost的设计哲学到工业实践:解锁下一代AI中间件架构的密码
c++·人工智能·中间件·架构·stackoverflow·boost