ChromaDB 向量库优化技巧实战

chroma 一步步使用

安装

bash 复制代码
# 安装chromadb
pip install chromadb,sentence_transformers

# 不启动服务会出现sock.connect(sa)TimeoutError: timed out
chroma run

服务启动后,您将看到类似以下输出:

建立连接

部署完成后,需要建立与Chroma服务的连接:

python 复制代码
import chromadb

# 创建了临时客户端。程序终止时,您提取的任何数据都会丢失
client = chromadb.Client()

创建向量集合

chroma连接若直接创建集合("Collection"(集合)是存储向量的基本单位,类似于关系型数据库中的表),会使用内置的嵌入模型all-MiniLM-L6-v2

python 复制代码
# 首先导入embedding模型
from chromadb.utils import embedding_functions



collection = chroma_client.create_collection(name="my_collection")
collection.add(
    documents=[
        "关于深度学习技术的文档",
        "关于的爱情小说文档"
    ],
    ids=["id1", "id2"]
)
print(collection)

chroma默认使用欧氏距离计算向量相似度

查询文档

Chroma提供多种查询方式,满足不同场景需求:

1. 基于ID查询

当你知道确切的文档ID时,可以直接查询:

python 复制代码
# 根据ID获取文档
result = collection.get(
    ids=["id1"]
)
2. 语义向量检索

RAG系统的核心功能是语义检索,基于查询与文档的语义相似度:

python 复制代码
# 语义检索
# Chroma 默认会返回 10 条结果。这里我们只添加了 2 个文档,因此我们设置n_results=2
results = collection.query(
    query_texts=["如何使用向量数据库?"],
    n_results=2
)
print(results)

工程中优化

混合检索

Chroma还支持将全文匹配与向量检索结合:

python 复制代码
# 全文匹配 + 向量检索
results = collection.query(
    query_texts=["检索技术的应用"],
    n_results=2,
    where_document={"$contains": "检索"},  # 文档必须包含"检索"一词
    include=["documents", "metadatas"]
)

Chroma支持将向量检索与元数据过滤结合,实现更精准的查询:

python 复制代码
# 元数据过滤 + 向量检索
results = collection.query(
    query_texts=["大语言模型的应用"],
    n_results=2,
    where={"topic": "llm"},  # 仅检索topic为llm的文档
    include=["documents", "metadatas"]
)

元数据过滤支持多种操作符:

  • 相等:{"field": value}
  • 不等:{"field": {"$ne": value}}
  • 大于/小于:{"field": {"$gt": value}}{"field": {"$lt": value}}
  • 范围:{"field": {"$gte": min_value, "$lte": max_value}}
  • 复合条件:{"$and": [condition1, condition2]}
调参:索引与性能优化

Chroma默认使用HNSW(分层可导航小世界图)作为向量索引算法,无需手动创建索引。但你可以通过元数据调整索引参数:

python 复制代码
# 创建集合时设置HNSW参数
collection = client.create_collection(
    name="optimized_collection",
    embedding_function=embedding_func,
    metadata={
        "hnsw:space": "cosine",       # 相似度度量方式
        "hnsw:M": 16,                 # 每个节点的最大连接数
        "hnsw:ef_construction": 200,  # 构建索引时的搜索宽度
        "hnsw:ef": 100                # 查询时的搜索宽度
    }
)

关键参数解释:

  • M:控制图的连接度,值越大精度越高但内存消耗也越大
  • ef_construction:影响索引质量,值越大精度越高但构建速度越慢
  • ef:影响查询精度和速度,值越大召回率越高但查询速度越慢
相关推荐
xiaoxiaoxiaolll2 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师2 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客4 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei4 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910135 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
安思派Anspire6 小时前
GPT-OSS 深度解析:OpenAI 最新大语言模型(LLM)架构
gpt·语言模型·架构
许泽宇的技术分享6 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生246 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
静西子7 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8287 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体