TCP连接状态说明

参考了网上一些文章,最终发现wireshark的wiki写的比较好,以此为基准,说明TCP在连接和断开时的状态迁移过程。

全局的TCP连接和断开的状态变更如下图所示:

复制代码

TCP 3-way handshake

We assume that both host (A) and server (B) side start from CLOSED status.

复制代码
  1. The server process create a TCB [1] and use TCB prepares to accept the host's request. After TCB born the server change status to LISTEN.

  2. The host does the same thing, create a TCB and use this TCB to send request, set the "SYN=1" in the request header, and initates a arbitrary sequence number, seq=x . SYN paccket (which means SYN=1) can not take any data content, but it will consume a sequence number. After request sent, the host goes into SYN-SENT status.

  3. After receiving the host's request:

    1. i. If the server accept to this connection, it will send back a confirm response. In the response both SYN and ACK bits should be '1', and server side also initiates a SEQ number, seq=y . The server will send its sequence number within packet which is used to be acknowledged to the clinet's SYN packet. This packet can not take any data content either, but it consumes a sequence number . So in this packet seq=y, ack=x+1. And the server goes into SYN-RCVD status.

    2. ii. If the server rejects the connection, it just responses a RST packet to reset the connection.

  4. After the host received the server's response, it will send back also a confirm packet with ACK bit sets to '1' and seq=x+1, ack=y+1. [2]

After that, both side gose into ESTABLISHED status. This is what we called three-way handshake.

Example

复制代码

Capture Example

3-way handshake.pcap

1\]. TCB---Transmission Control Block, something like PCB, it stores some significant info like, **TCP** connectio table, the pointer for the sending and receiving buffer, retransmission queue pointer, the current sequence number and acknowledge number and ext. \[2\]. ACK packet could take data content, if not, this packet will not consume SYN number. So the sequence number of the confirm packet is *seq=x+1* . But in practice, at times, **TCP** **3-way** **handshake** not only just initiates the connection, but also negotiate some very important parameters. MSS (*maximum segment size*) negotiation occurs in this steps. ### TCP 4-times close ``` ``` 1. Client send finish datagram to the server, indicated that client will close the transmission from client to server. This is called **active close**. (FIN=1, seq=u) 2. Server acknowledged the FIN datagram. (ACK=1, seq=v, ack=u+1) 3. Server contiues to transmit, if the server finishs the transmission it will close transmission from server to client. This is called **passive close**.(FIN=1, ACK=1, seq=w, ack=u+1) 4. Client acknowledged the FIN datagram to the server.\[1\] (ACK=1, seq=u+1, ack=w+1) \[1\]. After the ACK send, the client will not release the resource immediately, it will turn into TIME-WAIT status and wait 2-MSL (*Maximum Segment Lifetime*) time to release resource. #### Example ``` ``` #### Capture Example [4 times close.pcap](https://wiki.wireshark.org/TCP%204-times%20close?action=AttachFile&do=view&target=4+times+close.pcap "4 times close.pcap") ### 状态迁移图 ``` ```

相关推荐
Hello.Reader26 分钟前
从 0 到 1 理解硬盘数据恢复工具原理与工程实现
linux·运维·服务器·网络·数据库
小坏坏的大世界1 小时前
VMware 虚拟机无法上网问题排查
服务器·网络
KoiHeng2 小时前
网络原理相关内容(三)
网络
CHANG_THE_WORLD2 小时前
指针入门一
java·前端·网络
麦聪聊数据2 小时前
基于 Web SQL 与 SQL2API 的数据治理架构实践
运维·sql·架构
红球yyds3 小时前
haproxy介绍及部署
linux·运维·云原生
切糕师学AI3 小时前
NAT (Network Address Translation,网络地址转换)
运维·服务器·网络
x-cmd3 小时前
Browser-Use:用自然语言控制浏览器,告别脆弱的自动化脚本
运维·ai·自动化·agent·浏览器·x-cmd
AC赳赳老秦4 小时前
软件组件自动化的革命:DeepSeek 引领高效开发新时代
运维·人工智能·算法·云原生·maven·devops·deepseek
之歆4 小时前
LVS 负载均衡完全指南
运维·负载均衡·lvs