Leetcode 3552. Grid Teleportation Traversal

  • [Leetcode 3552. Grid Teleportation Traversal](#Leetcode 3552. Grid Teleportation Traversal)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题的话核心就是一个广度优先遍历,我们只需要从原点开始,一点点考察其所能到达的位置,直至其最终到达终点即可。

唯一特殊的是,考虑到传送的存在,这里会有些特殊操作,不难发现,一个端口至多发生一次传送,否则必然可以优化路线,因此我们只需要考察每一个端口值上是否有过传送即可。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def minMoves(self, matrix: List[str]) -> int:
        n, m = len(matrix), len(matrix[0])
        teleportation = defaultdict(list)
        for i in range(n):
            for j in range(m):
                if matrix[i][j] in "#.":
                    continue
                teleportation[matrix[i][j]].append((i, j))
                
        seen = {(0, 0)}
        q = [(0, 0, 0, 0)]
        
        def add_teleportation(step, i, j, status):
            nonlocal seen, q
            if matrix[i][j] not in "#." and (status & (1 << (ord(matrix[i][j]) - ord('A'))) == 0):
                for ti, tj in teleportation[matrix[i][j]]:
                    if (ti, tj) not in seen:
                        heapq.heappush(q, (step, ti, tj, status | (1 << (ord(matrix[i][j]) - ord('A')))))
                        seen.add((ti, tj))
            return
        
        add_teleportation(0, 0, 0, 0)
        
        while q != []:
            step, i, j, status = heapq.heappop(q)
            if (i, j) == (n-1, m-1):
                return step
            if i+1 < n and (i+1, j) not in seen and matrix[i+1][j] != "#":
                heapq.heappush(q, (step+1, i+1, j, status))
                seen.add((i+1, j))
                add_teleportation(step+1, i+1, j, status)
            if j+1 < m and (i, j+1 ) not in seen and matrix[i][j+1] != "#":
                heapq.heappush(q, (step+1, i, j+1, status))
                seen.add((i, j+1))
                add_teleportation(step+1, i, j+1, status)
            if i-1 >= 0 and (i-1, j) not in seen and matrix[i-1][j] != "#":
                heapq.heappush(q, (step+1, i-1, j, status))
                seen.add((i-1, j))
                add_teleportation(step+1, i-1, j, status)
            if j-1 >= 0 and (i, j-1 ) not in seen and matrix[i][j-1] != "#":
                heapq.heappush(q, (step+1, i, j-1, status))
                seen.add((i, j-1))
                add_teleportation(step+1, i, j-1, status)
        return -1

提交代码评测得到:耗时6943ms,占用内存147.7MB。

相关推荐
Espresso Macchiato3 天前
Leetcode 3568. Minimum Moves to Clean the Classroom
剪枝·广度优先遍历·leetcode medium·堆排·leetcode周赛452·leetcode 3568
Espresso Macchiato7 天前
Leetcode 3567. Minimum Absolute Difference in Sliding Submatrix
leetcode·leetcode medium·leetcode周赛452·leetcode 3567
Espresso Macchiato7 天前
Leetcode 3566. Partition Array into Two Equal Product Subsets
动态规划·leetcode medium·leetcode 3566·leetcode周赛452
Espresso Macchiato12 天前
Leetcode 3557. Find Maximum Number of Non Intersecting Substrings
动态规划·leetcode medium·leetcode 3557·leetcode双周赛157
Espresso Macchiato21 天前
Leetcode 3551. Minimum Swaps to Sort by Digit Sum
leetcode·排序·leetcode medium·leetcode 3551·leetcode周赛450
Espresso Macchiato24 天前
Leetcode 3543. Maximum Weighted K-Edge Path
leetcode·leetcode medium·图遍历·leetcode 3543·leetcode双周赛156
Espresso Macchiato1 个月前
Leetcode 3532. Path Existence Queries in a Graph I
leetcode medium·dsu·leetcode 3532·leetcode周赛447·uf
Espresso Macchiato2 个月前
Leetcode 3523. Make Array Non-decreasing
leetcode··leetcode medium·leetcode 3523·leetcode周赛446
Espresso Macchiato5 个月前
Leetcode 3418. Maximum Amount of Money Robot Can Earn
leetcode·动态规划·leetcode medium·leetcode 3418·leetcode周赛432