Leetcode 3568. Minimum Moves to Clean the Classroom

  • [Leetcode 3568. Minimum Moves to Clean the Classroom](#Leetcode 3568. Minimum Moves to Clean the Classroom)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题我的核心思路就是广度优先遍历遍历+剪枝。

显然,我们可以给出一个广度优先遍历来给出所有可能的走法直至无法继续或者捡完所有垃圾。

但是,上述情况事实上可能会无限循环下去,而且所有的走法也非常浪费,因此,我们需要对其进行剪枝,从而优化我们的计算。

而这里,我的剪枝思路就是:

  • 如果一个点曾经走过,则当他重新回到这个点的时候,他必须满足以下两个条件之一,否则这条路线必然不会是最优的,可以直接忽略:
    • 他在中间的过程中捡过了新的垃圾;
    • 他在中间的过程中补充了能量(即回来时的能量值大于之前来的时候的能量值)

由此,我们就能对上述问题进行解答了。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def minMoves(self, classroom: List[str], energy: int) -> int:
        n, m = len(classroom), len(classroom[0])
        k, mapping, seen = 0, {}, {}
        for i in range(n):
            for j in range(m):
                if classroom[i][j] == "L":
                    mapping[(i, j)] = k
                    k += 1
                elif classroom[i][j] == "S":
                    start = (0, 0, -energy, i, j)
                    seen[(0, i, j)] = energy
        if k == 0:
            return 0

        q = [start]
        while q:
            step, status, e, i, j = heapq.heappop(q)
            status = -status
            e = -e
            if status == (2**k)-1:
                return step
            elif e <= 0:
                continue
            if i-1 >= 0 and classroom[i-1][j] != "X":
                new_status = status if classroom[i-1][j] != "L" else status | (1 << mapping[(i-1, j)])
                new_energy = e-1 if classroom[i-1][j] != "R" else energy
                if seen.get((new_status, i-1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i-1, j))
                    seen[(new_status, i-1, j)] = new_energy
            if i+1 < n and classroom[i+1][j] != "X":
                new_status = status if classroom[i+1][j] != "L" else status | (1 << mapping[(i+1, j)])
                new_energy = e-1 if classroom[i+1][j] != "R" else energy
                if seen.get((new_status, i+1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i+1, j))
                    seen[(new_status, i+1, j)] = new_energy
            if j-1 >= 0 and classroom[i][j-1] != "X":
                new_status = status if classroom[i][j-1] != "L" else status | (1 << mapping[(i, j-1)])
                new_energy = e-1 if classroom[i][j-1] != "R" else energy
                if seen.get((new_status, i, j-1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j-1))
                    seen[(new_status, i, j-1)] = new_energy
            if j+1 < m and classroom[i][j+1] != "X":
                new_status = status if classroom[i][j+1] != "L" else status | (1 << mapping[(i, j+1)])
                new_energy = e-1 if classroom[i][j+1] != "R" else energy
                if seen.get((new_status, i, j+1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j+1))
                    seen[(new_status, i, j+1)] = new_energy
        return -1

提交代码评测得到:耗时3097ms,占用内存58.28MB。

相关推荐
程序员清洒1 小时前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
m0_603888711 天前
POP Prefill-Only Pruning for Efficient Large Model Inference
算法·机器学习·ai·剪枝·论文速览
爱吃泡芙的小白白1 天前
从GAP到剪枝:CNN全连接层分类技术演进与实战指南
分类·cnn·剪枝·全连接层·模型分类
胖咕噜的稞达鸭2 天前
算法日记:穷举vs暴搜vs深搜vs回溯vs剪枝--全排列
算法·深度优先·剪枝
li三河3 天前
yolo进行剪枝、蒸馏、量化研究
算法·yolo·剪枝
少许极端6 天前
算法奇妙屋(二十七)-全排列与子集问题
算法·剪枝·回溯·递归
乌萨奇也要立志学C++6 天前
【洛谷】剪枝与优化 剪枝策略实战解析:数的划分与小猫爬山
算法·剪枝
木井巳7 天前
【递归算法】验证二叉搜索树
java·算法·leetcode·深度优先·剪枝
木井巳8 天前
【递归算法】二叉树剪枝
java·算法·leetcode·深度优先·剪枝
AI即插即用13 天前
即插即用系列 | AAAI 2025 Mesorch:CNN与Transformer的双剑合璧:基于频域增强与自适应剪枝的篡改定位
人工智能·深度学习·神经网络·计算机视觉·cnn·transformer·剪枝