Leetcode 3568. Minimum Moves to Clean the Classroom

  • [Leetcode 3568. Minimum Moves to Clean the Classroom](#Leetcode 3568. Minimum Moves to Clean the Classroom)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题我的核心思路就是广度优先遍历遍历+剪枝。

显然,我们可以给出一个广度优先遍历来给出所有可能的走法直至无法继续或者捡完所有垃圾。

但是,上述情况事实上可能会无限循环下去,而且所有的走法也非常浪费,因此,我们需要对其进行剪枝,从而优化我们的计算。

而这里,我的剪枝思路就是:

  • 如果一个点曾经走过,则当他重新回到这个点的时候,他必须满足以下两个条件之一,否则这条路线必然不会是最优的,可以直接忽略:
    • 他在中间的过程中捡过了新的垃圾;
    • 他在中间的过程中补充了能量(即回来时的能量值大于之前来的时候的能量值)

由此,我们就能对上述问题进行解答了。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def minMoves(self, classroom: List[str], energy: int) -> int:
        n, m = len(classroom), len(classroom[0])
        k, mapping, seen = 0, {}, {}
        for i in range(n):
            for j in range(m):
                if classroom[i][j] == "L":
                    mapping[(i, j)] = k
                    k += 1
                elif classroom[i][j] == "S":
                    start = (0, 0, -energy, i, j)
                    seen[(0, i, j)] = energy
        if k == 0:
            return 0

        q = [start]
        while q:
            step, status, e, i, j = heapq.heappop(q)
            status = -status
            e = -e
            if status == (2**k)-1:
                return step
            elif e <= 0:
                continue
            if i-1 >= 0 and classroom[i-1][j] != "X":
                new_status = status if classroom[i-1][j] != "L" else status | (1 << mapping[(i-1, j)])
                new_energy = e-1 if classroom[i-1][j] != "R" else energy
                if seen.get((new_status, i-1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i-1, j))
                    seen[(new_status, i-1, j)] = new_energy
            if i+1 < n and classroom[i+1][j] != "X":
                new_status = status if classroom[i+1][j] != "L" else status | (1 << mapping[(i+1, j)])
                new_energy = e-1 if classroom[i+1][j] != "R" else energy
                if seen.get((new_status, i+1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i+1, j))
                    seen[(new_status, i+1, j)] = new_energy
            if j-1 >= 0 and classroom[i][j-1] != "X":
                new_status = status if classroom[i][j-1] != "L" else status | (1 << mapping[(i, j-1)])
                new_energy = e-1 if classroom[i][j-1] != "R" else energy
                if seen.get((new_status, i, j-1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j-1))
                    seen[(new_status, i, j-1)] = new_energy
            if j+1 < m and classroom[i][j+1] != "X":
                new_status = status if classroom[i][j+1] != "L" else status | (1 << mapping[(i, j+1)])
                new_energy = e-1 if classroom[i][j+1] != "R" else energy
                if seen.get((new_status, i, j+1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j+1))
                    seen[(new_status, i, j+1)] = new_energy
        return -1

提交代码评测得到:耗时3097ms,占用内存58.28MB。

相关推荐
蒙奇D索大1 天前
【算法】递归算法的深度实践:从布尔运算到二叉树剪枝的DFS之旅
笔记·学习·算法·leetcode·深度优先·剪枝
阿里花盘3 天前
教育培训机构如何搭建自己的在线教育小程序?
小程序·哈希算法·剪枝·霍夫曼树
~~李木子~~5 天前
五子棋项目Alpha-Beta剪枝与MCTS+神经网络实现人机对弈算法对比报告
神经网络·算法·剪枝
再卷也是菜5 天前
算法基础篇(10)递归型枚举与回溯剪枝
算法·深度优先·剪枝
手握风云-5 天前
回溯剪枝的“减法艺术”:化解超时危机的 “救命稻草”(三)
算法·剪枝
blammmp9 天前
算法专题十七:穷举vs暴搜vs深搜vs回溯vs剪枝
算法·机器学习·剪枝
余俊晖25 天前
多模态文档理解视觉token剪枝思路
人工智能·算法·剪枝·多模态
Pluchon25 天前
硅基计划4.0 算法 二叉树深搜(DFS)
java·数据结构·算法·leetcode·深度优先·剪枝
小欣加油1 个月前
leetcode 329 矩阵中的最长递增路径
c++·算法·leetcode·矩阵·深度优先·剪枝
Espresso Macchiato1 个月前
Leetcode 3710. Maximum Partition Factor
leetcode·职场和发展·广度优先遍历·二分法·leetcode hard·leetcode 3710·leetcode双周赛167