Leetcode 3568. Minimum Moves to Clean the Classroom

  • [Leetcode 3568. Minimum Moves to Clean the Classroom](#Leetcode 3568. Minimum Moves to Clean the Classroom)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题我的核心思路就是广度优先遍历遍历+剪枝。

显然,我们可以给出一个广度优先遍历来给出所有可能的走法直至无法继续或者捡完所有垃圾。

但是,上述情况事实上可能会无限循环下去,而且所有的走法也非常浪费,因此,我们需要对其进行剪枝,从而优化我们的计算。

而这里,我的剪枝思路就是:

  • 如果一个点曾经走过,则当他重新回到这个点的时候,他必须满足以下两个条件之一,否则这条路线必然不会是最优的,可以直接忽略:
    • 他在中间的过程中捡过了新的垃圾;
    • 他在中间的过程中补充了能量(即回来时的能量值大于之前来的时候的能量值)

由此,我们就能对上述问题进行解答了。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def minMoves(self, classroom: List[str], energy: int) -> int:
        n, m = len(classroom), len(classroom[0])
        k, mapping, seen = 0, {}, {}
        for i in range(n):
            for j in range(m):
                if classroom[i][j] == "L":
                    mapping[(i, j)] = k
                    k += 1
                elif classroom[i][j] == "S":
                    start = (0, 0, -energy, i, j)
                    seen[(0, i, j)] = energy
        if k == 0:
            return 0

        q = [start]
        while q:
            step, status, e, i, j = heapq.heappop(q)
            status = -status
            e = -e
            if status == (2**k)-1:
                return step
            elif e <= 0:
                continue
            if i-1 >= 0 and classroom[i-1][j] != "X":
                new_status = status if classroom[i-1][j] != "L" else status | (1 << mapping[(i-1, j)])
                new_energy = e-1 if classroom[i-1][j] != "R" else energy
                if seen.get((new_status, i-1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i-1, j))
                    seen[(new_status, i-1, j)] = new_energy
            if i+1 < n and classroom[i+1][j] != "X":
                new_status = status if classroom[i+1][j] != "L" else status | (1 << mapping[(i+1, j)])
                new_energy = e-1 if classroom[i+1][j] != "R" else energy
                if seen.get((new_status, i+1, j), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i+1, j))
                    seen[(new_status, i+1, j)] = new_energy
            if j-1 >= 0 and classroom[i][j-1] != "X":
                new_status = status if classroom[i][j-1] != "L" else status | (1 << mapping[(i, j-1)])
                new_energy = e-1 if classroom[i][j-1] != "R" else energy
                if seen.get((new_status, i, j-1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j-1))
                    seen[(new_status, i, j-1)] = new_energy
            if j+1 < m and classroom[i][j+1] != "X":
                new_status = status if classroom[i][j+1] != "L" else status | (1 << mapping[(i, j+1)])
                new_energy = e-1 if classroom[i][j+1] != "R" else energy
                if seen.get((new_status, i, j+1), -1) < new_energy:
                    heapq.heappush(q, (step+1, -new_status, -new_energy, i, j+1))
                    seen[(new_status, i, j+1)] = new_energy
        return -1

提交代码评测得到:耗时3097ms,占用内存58.28MB。

相关推荐
AI即插即用3 天前
即插即用系列 | AAAI 2025 Mesorch:CNN与Transformer的双剑合璧:基于频域增强与自适应剪枝的篡改定位
人工智能·深度学习·神经网络·计算机视觉·cnn·transformer·剪枝
BLi4ee5 天前
【Scholarly Notes】Adaptive Model Pruning for Federated Learning
算法·机器学习·剪枝
Bruce_kaizy6 天前
c++ dfs搜索算法——剪枝
c++·深度优先·剪枝
乌萨奇也要立志学C++8 天前
【洛谷】搜索初识 回溯剪枝 + 三大枚举题型 + 全排列实现
算法·剪枝
独自破碎E9 天前
【回溯+剪枝】字符串的排列
算法·机器学习·剪枝
BLSxiaopanlaile10 天前
关于子集和问题的几种解法
数据结构·算法·剪枝·回溯·分解
Zilliz Planet12 天前
官宣,Milvus开源语义高亮模型:告别饱和检索,帮RAG、agent剪枝80%上下文
人工智能·算法·机器学习·剪枝·milvus
燃于AC之乐12 天前
我的算法修炼之路--6 ——模幂、构造、背包、贪心、剪枝、堆维护六题精析
c++·数学·算法·贪心算法·dfs·剪枝·01背包
️停云️16 天前
【滑动窗口与双指针】不定长滑动窗口
c++·算法·leetcode·剪枝·哈希
Yzzz-F18 天前
P4145 上帝造题的七分钟 2 / 花神游历各国[线段树 区间开方(剪枝) + 区间求和]
算法·机器学习·剪枝