TomatoSCI分析日记——K均值聚类

上一篇文章讲了层次聚类,今天再来说一下K均值(K-mean)聚类。虽然说目的都是为了聚类,但是他们的原理和展示方式都截然不同。其工作原理是K均值聚类的核心原理是:先指定要分成K类,然后通过迭代优化,让每个点归到离它最近的类中心,最后让类中心尽可能地代表这一类的数据点。

01 K均值聚类示例

在图1示例数据中,每一列为一个特征,是聚类计算的依据;每行为一个样本,需要对它们进行分类。

图2是轮廓系数,轮廓系数用于评估每个簇数的聚类质量,越高质量越好。

图3是K均值聚类结果,与层次聚类不同,K均值聚类采用展示方法的是降维散点图。

图4则展示了每个样品的聚类归属。

02 K均值聚类和层次聚类孰优孰劣?

K均值聚类的优点:效率高,速度快,适用于大样本数据,特别是当样本数量上千上万时,K均值能迅速完成聚类,适合大规模聚类。

K均值聚类的局限:必须自己设定聚类簇数,就像文中我们选取了轮廓系数最高的簇数;想要追踪样品归属的类别需要输出结果文件。

层次聚类的优点:层次可以不设定聚类数(也可以事先设定),首先生成一整棵树状图(dendrogram),你可以之后再决定切成几类,灵活性更高;可以观察到样本之间的聚类的过程以及具体归属,适合小样本精细分组分析。

层次聚类聚类的局限:不适合大规模数据集,当数据太多时,树状图展示的可读性就变得十分差。

03 如何选择聚类方法?

思考这三个问题,可以帮你快速决策:

一、数据量大吗?

大量样本 → 优先考虑K均值;

小数据、讲究解释性 → 可选层次聚类;

二、你是否希望保留层级结构信息?

如果你关心"谁和谁最像"、"谁是后来才分开的" → 层次聚类更合适。

三、你知道应该分几类吗?

知道 → K均值更快捷;

不知道 → 层次聚类搭配树状图更直观。

当然,无论哪种方法,轮廓系数都是一个推荐的聚类质量评价指标,可以辅助选择最合适的簇数。

TomatoSCI科研数据分析平台,欢迎大家来访!数据分析无需登录,专业在线客服答疑,还可在线传输文件,五折优惠码"tomatosci"开放使用中。PCA、RDA、PCoA、层次聚类等方法等你就位。

相关推荐
TomatoSCI18 分钟前
量化冗余分析中变量的关系丨TomatoSCI分析日记
数据分析·tomatosci·冗余分析
郑洁文37 分钟前
豆瓣网影视数据分析与应用
大数据·python·数据挖掘·数据分析
悟乙己14 小时前
PySpark EDA 完整案例介绍,附代码(三)
数据挖掘·数据分析·pyspark·eda·数据清理
用户Taobaoapi201418 小时前
微店API秘籍!轻松获取商品详情数据
大数据·数据挖掘·数据分析
jay神19 小时前
基于Python的商品爬取与可视化系统
爬虫·python·数据分析·毕业设计·可视化系统
Aloudata技术团队1 天前
当“数据波动”遇上“智能归因”,谁在背后画出那张因果地图?
数据分析·agent
华科云商xiao徐1 天前
如何在C语言环境中借助Linux库构建高效网络爬虫
爬虫·数据挖掘·数据分析
胡耀超1 天前
7、Matplotlib、Seaborn、Plotly数据可视化与探索性分析(探索性数据分析(EDA)方法论)
python·信息可视化·plotly·数据挖掘·数据分析·matplotlib·seaborn
计算机学姐2 天前
基于Python的旅游数据分析可视化系统【2026最新】
vue.js·后端·python·数据分析·django·flask·旅游
阿里云大数据AI技术2 天前
淘宝闪购实时分析黑科技:StarRocks + Paimon撑起秋天第一波奶茶自由
数据分析