OpenCV CUDA 模块图像过滤------创建一个高斯滤波器函数createGaussianFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::createGaussianFilter 是 OpenCV CUDA 模块中的一个工厂函数,用于创建一个高斯滤波器。这个滤波器可以用来平滑图像,减少噪声,并且在很多计算机视觉任务中作为预处理步骤非常有用。

函数原型

cpp 复制代码
cv::Ptr<cv::cuda::Filter> cv::cuda::createGaussianFilter
(
    int srcType,
    int dstType,
    cv::Size ksize,
    double sigma1,
    double sigma2 = 0,
    int rowBorderMode = cv::BORDER_DEFAULT,
    int columnBorderMode = -1
);

参数

参数名 类型 描述
srcType int 输入图像类型,例如 CV_8UC1, CV_32FC1 等。
dstType int 输出图像类型,通常与输入类型相同或根据需求指定。
ksize cv::Size 高斯核大小(宽度和高度),必须为正奇数。如果设置为 (0, 0),则根据 sigma1 和 sigma2 自动计算。
sigma1 double x方向的标准差。
sigma2 double y方向的标准差。如果设为 0,则与 sigma1 相同。
rowBorderMode int 行方向上的边界填充模式,默认为 cv::BORDER_DEFAULT。
columnBorderMode int 列方向上的边界填充模式,默认使用 rowBorderMode 的值(即 -1)。

代码示例

cpp 复制代码
#include <opencv2/cudafilters.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 读取灰度图像
    cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( h_img.empty() )
    {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src, d_dst;
    d_src.upload( h_img );

    // 创建高斯滤波器(ksize=5x5, sigmaX=1.5)
    cv::Ptr< cv::cuda::Filter > gaussianFilter = cv::cuda::createGaussianFilter( d_src.type(),      // 输入类型(CV_8UC1)
                                                                                 d_src.type(),      // 输出类型与输入相同
                                                                                 cv::Size( 5, 5 ),  // 核大小
                                                                                 1.5,               // sigmaX
                                                                                 1.5                // sigmaY
    );

    // 应用高斯滤波器
    gaussianFilter->apply( d_src, d_dst );

    // 下载结果回 CPU
    cv::Mat h_dst;
    d_dst.download( h_dst );

    // 显示原始图像及高斯模糊后的图像
    cv::imshow( "Original", h_img );
    cv::imshow( "Gaussian Blurred", h_dst );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
飞哥数智坊10 小时前
AI编程实战:Cursor+Claude4助力15分钟完成大屏开发
人工智能·claude·cursor
Kier14 小时前
基于YOLO实现一个智能条码识别
人工智能·python·ai编程
我是王大你是谁14 小时前
SmolVLA:一种用于经济实惠和高效的机器人视觉-语言-动作模型
人工智能·llm
MarkGosling14 小时前
【语音合成】B 站开源 IndexTTS :声音克隆,吊打真人发音,断句精准度 98%
人工智能·python
数据智能老司机14 小时前
AI产品开发的艺术——搜索与检索增强生成
人工智能·产品经理·产品
机器之心14 小时前
逐个token太慢!大模型原生并行出token,CMU、英伟达新作Multiverse
人工智能·llm
AI大模型技术社15 小时前
⚙️企业级Transformer优化:混合精度×梯度裁剪×权重初始化最佳实践
人工智能·llm
机器之心15 小时前
首个转型AI公司的新势力,在全球AI顶会展示下一代自动驾驶模型
人工智能
机器之心15 小时前
同一天开源新模型,一推理一编程,MiniMax和月之暗面开卷了
人工智能
腾讯云开发者15 小时前
腾讯云TVP走进青岛啤酒,解码数字化驱动智慧零售增长引擎
人工智能