目标检测 Lite-DETR(2023)详细解读

文章目录

论文翻译: CVPR 2023 | Lite DETR:计算量减少60%!高效交错多尺度编码器-CSDN博客

DINO团队的

(Lightweight Transformer for Object Detection)它是对DETR(Transformers for Object Detection)模型的一种轻量级改进,在保持模型性能的同时,成功将Encoder的计算开销减少了50%

改进的是Encoder,提出交错的多尺度Encoder,

对低层级的特征图的token来说,将会耗费太多的计算量,模型的性能提升也比较少,但是也不能去掉这些低层级的特征,因为很多检测需要低层级的特征提供信息。如上图所示,去掉低层级的特征图,Encoder的计算量会得到大幅度的降低,相应小目标的检测精度也会下降,大目标的检测精度没有太大影响。

下图是各个特征图的token数量占总token的比例

如下图所示, S1 ∼ S3 作为高级特征 ,(a) 是 3.4 节中讨论的建议的高级特征更新,(b) 是 3.5 节中讨论的低级特征跨尺度融合。在每个高效编码器块中,多尺度特征将经过 A 次高级特征更新,然后在每个块的末尾进行低级特征更新。高效编码器块将执行 B 次。

迭代高级特征跨尺度融合

在不同的设置中,FH 可以包含前三个或两个刻度,为清楚起见,我们默认将 FH 设为 S1、S2、S3,将 FL 设为 S4。FH 被视为主要特征,更新频率较高,而 FL 更新频率较低。

在该模块中,高层特征 FH 将作为查询(Q),从所有尺度中提取特征,包括低层和高层特征标记。这一操作增强了高层语义和高分辨率细节对 FH 的表示。例如,如表 2 所示,在前两个尺度或前三个尺度中使用多尺度特征查询将分别大幅减少 94.1% 和 75.3% 的查询次数。我们还使用了将在第 3.6 节中讨论的关键字感知注意力模块 KDA 来执行注意力和更新标记。

高效的低层次特征跨尺度融合

低级特征包含过多的标记,这是导致计算效率低下的关键因素。因此,高效编码器会在一系列高级特征融合之后,以较低的频率更新这些低级特征。具体来说,我们利用初始低层次特征作为查询,与更新的高层次标记以及原始低层次特征进行交互,以更新它们的表示。与高层特征更新类似,我们也使用了与 KDA 注意层的交互。

KDA:Key-aware Deformable Attention

相关推荐
电商API&Tina14 小时前
跨境电商速卖通(AliExpress)数据采集与 API 接口接入全方案
大数据·开发语言·前端·数据库·人工智能·python
得贤招聘官14 小时前
招聘终极战场:AI重构首轮筛选的精准与效能革命
人工智能·重构
通义灵码15 小时前
使用记忆提升开发效率
人工智能·qoder·记忆能力
Echo_NGC223715 小时前
【传统JSCC+Deep JSCC】联合信源信道编码完全指南
人工智能·python·深度学习·神经网络·conda·无人机·jscc
阿杰学AI15 小时前
AI核心知识63——大语言模型之Reasoning Model (简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·cot·推理模型·reasoning model
Blossom.11815 小时前
大模型AI Agent实战:ReAct框架从零实现与金融研报分析系统
人工智能·学习·react.js·stable diffusion·金融·aigc·知识图谱
Mintopia15 小时前
🌐 技术迭代速度与监管适配:WebAIGC的发展平衡术
前端·人工智能·aigc
多则惑少则明15 小时前
AI大模型实用(九)Java快速实现智能体整理(使用LangChain4j-agentic + Tool)
java·人工智能·springai·langchain4j
模型启动机15 小时前
告别OCR与分块!ICLR 2025 ColPali实现视觉文档检索精度&速度双碾压
人工智能·ai·大模型·ocr
xerthwis15 小时前
Hadoop:大数据世界的“古老基石”与“沉默的共生者”
大数据·人工智能·hadoop