超简单Translation翻译模型部署

Helsinki-NLP/opus-mt-{en}-{zh}系列翻译模型可以实现200多种语言翻译,Helsinki-NLP/opus-mt-en-zh是其中英互译模型。由于项目需要,在本地进行搭建,并记录下搭建过程,方便后人。

1. 基本硬件环境

  • CPU:N年前的 Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 32G内存
  • GPU:N年前的 NVIDIA GeForce GTX 1080 Ti,11G显存

2. 基本软件环境

  • 操作系统:Ubuntu20.04 LTS,是为了跟老旧的硬件相匹配,专门降级到20.04的,更高版本存在各种软件兼容性问题,等有钱了全部换新!!!
  • CUDA:cuda_12.0.0_525.60.13_linux.run,虽然能支持到12.2甚至12.4,保险起见还是选择了12.0
  • Cudnn:libcudnn8_8.8.0.121-1+cuda12.0_amd64.deb,对应CUDA版本
  • NCCL:libnccl2_2.19.3-1+cuda12.0_amd64.deb对应CUDA版本,多显卡需要
  • miniconda:Miniconda3-py312_24.9.2-0-Linux-x86_64.sh

3. 克隆fishspeech代码并安装本地依赖包

复制代码
git clone https://gitclone.com/github.com/fishaudio/fish-speech.git

sudo apt-get install ffmpeg libsm6 libxext6 portaudio19-dev -y

4. 创建虚拟环境

复制代码
conda create -n huggingface python==3.10 -y
conda activate huggingface

5. conda安装基础包

复制代码
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8

6. 安装huggingface组件,transformers包

复制代码
pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U huggingface_hub -i https://pypi.tuna.tsinghua.edu.cn/simple

设置环境变量,用于加速
HF_ENDPOINT=https://hf-mirror.com

7. 以python脚本方式运行

python 复制代码
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

print(tokenizer.supported_language_codes)
text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
translated_text = translate(text)
print(translated_text)

首次运行会报错,因为缺少两个依赖包,安装即可

python 复制代码
pip install sentencepiece sacremoses -i https://pypi.tuna.tsinghua.edu.cn/simple

8. 以FastAPI方式运行

python 复制代码
# 安装fastapi ubicorn组件
pip install fastapi uvicorn -i https://pypi.tuna.tsinghua.edu.cn/simple

服务脚本如下:

python 复制代码
# Load model directly
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

app = FastAPI()

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

# print(tokenizer.supported_language_codes)
# text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
# translated_text = translate(text)
# print(translated_text)

class TextRequest(BaseModel):
    text: str
 
@app.post("/predict")
async def predict(request: TextRequest):
    # 预处理和预测
    translated_text = translate(request.text)
    
    # 返回结果
    return {
        "text": request.text,
        "predictions": translated_text
    }

运行服务

python 复制代码
uvicorn fastapi_app:app --host 0.0.0.0 --port 8000
相关推荐
大模型任我行3 小时前
复旦:评估LLM作为教师模型的能力
人工智能·语言模型·自然语言处理·论文笔记
勤劳的进取家4 小时前
论文阅读:PURPLE: Making a Large Language Model a Better SQL Writer
人工智能·语言模型·自然语言处理
Lifeng666666664 小时前
显存不够?节约显存高效微调语言模型的五种方法及实验
人工智能·语言模型·自然语言处理
老大白菜4 小时前
FastMCP:为大语言模型构建强大的上下文和工具服务
人工智能·microsoft·语言模型
Fanxt_Ja4 小时前
通过上传使大模型读取并分析文件实战
java·人工智能·spring boot·语言模型·状态模式·spring ai
J_Xiong011716 小时前
【VLNs篇】05:TGS-在无地图室外环境中使用视觉语言模型进行轨迹生成和选择
人工智能·机器学习·语言模型
DisonTangor18 小时前
MMaDA——开源首个多模态大扩散语言模型
人工智能·语言模型·自然语言处理
Jamence18 小时前
多模态大语言模型arxiv论文略读(八十八)
论文阅读·人工智能·计算机视觉·语言模型·论文笔记
一点.点18 小时前
视觉语言模型(Vision-Language Model, VLM)的简单介绍
人工智能·语言模型