超简单Translation翻译模型部署

Helsinki-NLP/opus-mt-{en}-{zh}系列翻译模型可以实现200多种语言翻译,Helsinki-NLP/opus-mt-en-zh是其中英互译模型。由于项目需要,在本地进行搭建,并记录下搭建过程,方便后人。

1. 基本硬件环境

  • CPU:N年前的 Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 32G内存
  • GPU:N年前的 NVIDIA GeForce GTX 1080 Ti,11G显存

2. 基本软件环境

  • 操作系统:Ubuntu20.04 LTS,是为了跟老旧的硬件相匹配,专门降级到20.04的,更高版本存在各种软件兼容性问题,等有钱了全部换新!!!
  • CUDA:cuda_12.0.0_525.60.13_linux.run,虽然能支持到12.2甚至12.4,保险起见还是选择了12.0
  • Cudnn:libcudnn8_8.8.0.121-1+cuda12.0_amd64.deb,对应CUDA版本
  • NCCL:libnccl2_2.19.3-1+cuda12.0_amd64.deb对应CUDA版本,多显卡需要
  • miniconda:Miniconda3-py312_24.9.2-0-Linux-x86_64.sh

3. 克隆fishspeech代码并安装本地依赖包

复制代码
git clone https://gitclone.com/github.com/fishaudio/fish-speech.git

sudo apt-get install ffmpeg libsm6 libxext6 portaudio19-dev -y

4. 创建虚拟环境

复制代码
conda create -n huggingface python==3.10 -y
conda activate huggingface

5. conda安装基础包

复制代码
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8

6. 安装huggingface组件,transformers包

复制代码
pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U huggingface_hub -i https://pypi.tuna.tsinghua.edu.cn/simple

设置环境变量,用于加速
HF_ENDPOINT=https://hf-mirror.com

7. 以python脚本方式运行

python 复制代码
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

print(tokenizer.supported_language_codes)
text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
translated_text = translate(text)
print(translated_text)

首次运行会报错,因为缺少两个依赖包,安装即可

python 复制代码
pip install sentencepiece sacremoses -i https://pypi.tuna.tsinghua.edu.cn/simple

8. 以FastAPI方式运行

python 复制代码
# 安装fastapi ubicorn组件
pip install fastapi uvicorn -i https://pypi.tuna.tsinghua.edu.cn/simple

服务脚本如下:

python 复制代码
# Load model directly
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

app = FastAPI()

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

# print(tokenizer.supported_language_codes)
# text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
# translated_text = translate(text)
# print(translated_text)

class TextRequest(BaseModel):
    text: str
 
@app.post("/predict")
async def predict(request: TextRequest):
    # 预处理和预测
    translated_text = translate(request.text)
    
    # 返回结果
    return {
        "text": request.text,
        "predictions": translated_text
    }

运行服务

python 复制代码
uvicorn fastapi_app:app --host 0.0.0.0 --port 8000
相关推荐
SmartBrain1 天前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
JoannaJuanCV2 天前
大语言模型基石:Transformer
人工智能·语言模型·transformer
大千AI助手2 天前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
什么都想学的阿超2 天前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
J_Xiong01172 天前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
艾醒(AiXing-w)2 天前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
这张生成的图像能检测吗2 天前
(综述)视觉任务的视觉语言模型
人工智能·计算机视觉·语言模型·自然语言处理·视觉语言模型
semantist@语校2 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
fanstuck2 天前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt