超简单Translation翻译模型部署

Helsinki-NLP/opus-mt-{en}-{zh}系列翻译模型可以实现200多种语言翻译,Helsinki-NLP/opus-mt-en-zh是其中英互译模型。由于项目需要,在本地进行搭建,并记录下搭建过程,方便后人。

1. 基本硬件环境

  • CPU:N年前的 Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 32G内存
  • GPU:N年前的 NVIDIA GeForce GTX 1080 Ti,11G显存

2. 基本软件环境

  • 操作系统:Ubuntu20.04 LTS,是为了跟老旧的硬件相匹配,专门降级到20.04的,更高版本存在各种软件兼容性问题,等有钱了全部换新!!!
  • CUDA:cuda_12.0.0_525.60.13_linux.run,虽然能支持到12.2甚至12.4,保险起见还是选择了12.0
  • Cudnn:libcudnn8_8.8.0.121-1+cuda12.0_amd64.deb,对应CUDA版本
  • NCCL:libnccl2_2.19.3-1+cuda12.0_amd64.deb对应CUDA版本,多显卡需要
  • miniconda:Miniconda3-py312_24.9.2-0-Linux-x86_64.sh

3. 克隆fishspeech代码并安装本地依赖包

复制代码
git clone https://gitclone.com/github.com/fishaudio/fish-speech.git

sudo apt-get install ffmpeg libsm6 libxext6 portaudio19-dev -y

4. 创建虚拟环境

复制代码
conda create -n huggingface python==3.10 -y
conda activate huggingface

5. conda安装基础包

复制代码
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8

6. 安装huggingface组件,transformers包

复制代码
pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U huggingface_hub -i https://pypi.tuna.tsinghua.edu.cn/simple

设置环境变量,用于加速
HF_ENDPOINT=https://hf-mirror.com

7. 以python脚本方式运行

python 复制代码
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

print(tokenizer.supported_language_codes)
text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
translated_text = translate(text)
print(translated_text)

首次运行会报错,因为缺少两个依赖包,安装即可

python 复制代码
pip install sentencepiece sacremoses -i https://pypi.tuna.tsinghua.edu.cn/simple

8. 以FastAPI方式运行

python 复制代码
# 安装fastapi ubicorn组件
pip install fastapi uvicorn -i https://pypi.tuna.tsinghua.edu.cn/simple

服务脚本如下:

python 复制代码
# Load model directly
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

app = FastAPI()

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")

def translate(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True)
    translated = model.generate(**inputs)
    return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

# print(tokenizer.supported_language_codes)
# text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
# translated_text = translate(text)
# print(translated_text)

class TextRequest(BaseModel):
    text: str
 
@app.post("/predict")
async def predict(request: TextRequest):
    # 预处理和预测
    translated_text = translate(request.text)
    
    # 返回结果
    return {
        "text": request.text,
        "predictions": translated_text
    }

运行服务

python 复制代码
uvicorn fastapi_app:app --host 0.0.0.0 --port 8000
相关推荐
Chef_Chen1 天前
从0开始学习语言模型--Day02-如何最大化利用硬件
人工智能·学习·语言模型
时空无限2 天前
列举开源的模型和推理框架
语言模型
LeeZhao@2 天前
【狂飙AGI】第4课:前沿技术-具身智能
语言模型·自然语言处理·aigc·embedding·agi
vlln2 天前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer
CoderJia程序员甲2 天前
awesome-llm-apps 项目带你探索语言模型的无限可能
人工智能·ai·语言模型·自然语言处理
硅谷秋水3 天前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
扫地的小何尚3 天前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
时空无限3 天前
使用 ollama 在 mac 本地部署一个 qwen3:8b 模型
人工智能·语言模型
艾醒(AiXing-w)3 天前
探索大语言模型(LLM):使用EvalScope进行模型评估(API方式)
人工智能·语言模型·自然语言处理
Jamence3 天前
多模态大语言模型arxiv论文略读(118)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记