Helsinki-NLP/opus-mt-{en}-{zh}系列翻译模型可以实现200多种语言翻译,Helsinki-NLP/opus-mt-en-zh是其中英互译模型。由于项目需要,在本地进行搭建,并记录下搭建过程,方便后人。
1. 基本硬件环境
- CPU:N年前的 Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 32G内存
- GPU:N年前的 NVIDIA GeForce GTX 1080 Ti,11G显存
2. 基本软件环境
- 操作系统:Ubuntu20.04 LTS,是为了跟老旧的硬件相匹配,专门降级到20.04的,更高版本存在各种软件兼容性问题,等有钱了全部换新!!!
- CUDA:cuda_12.0.0_525.60.13_linux.run,虽然能支持到12.2甚至12.4,保险起见还是选择了12.0
- Cudnn:libcudnn8_8.8.0.121-1+cuda12.0_amd64.deb,对应CUDA版本
- NCCL:libnccl2_2.19.3-1+cuda12.0_amd64.deb对应CUDA版本,多显卡需要
- miniconda:Miniconda3-py312_24.9.2-0-Linux-x86_64.sh
3. 克隆fishspeech代码并安装本地依赖包
git clone https://gitclone.com/github.com/fishaudio/fish-speech.git
sudo apt-get install ffmpeg libsm6 libxext6 portaudio19-dev -y
4. 创建虚拟环境
conda create -n huggingface python==3.10 -y
conda activate huggingface
5. conda安装基础包
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8
6. 安装huggingface组件,transformers包
pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U huggingface_hub -i https://pypi.tuna.tsinghua.edu.cn/simple
设置环境变量,用于加速
HF_ENDPOINT=https://hf-mirror.com
7. 以python脚本方式运行
python
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
def translate(text):
inputs = tokenizer(text, return_tensors="pt", padding=True)
translated = model.generate(**inputs)
return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
print(tokenizer.supported_language_codes)
text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
translated_text = translate(text)
print(translated_text)
首次运行会报错,因为缺少两个依赖包,安装即可
python
pip install sentencepiece sacremoses -i https://pypi.tuna.tsinghua.edu.cn/simple
8. 以FastAPI方式运行
python
# 安装fastapi ubicorn组件
pip install fastapi uvicorn -i https://pypi.tuna.tsinghua.edu.cn/simple
服务脚本如下:
python
# Load model directly
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
app = FastAPI()
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
def translate(text):
inputs = tokenizer(text, return_tensors="pt", padding=True)
translated = model.generate(**inputs)
return [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
# print(tokenizer.supported_language_codes)
# text = ">>cmn_Hans<< Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`. The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
# translated_text = translate(text)
# print(translated_text)
class TextRequest(BaseModel):
text: str
@app.post("/predict")
async def predict(request: TextRequest):
# 预处理和预测
translated_text = translate(request.text)
# 返回结果
return {
"text": request.text,
"predictions": translated_text
}
运行服务
python
uvicorn fastapi_app:app --host 0.0.0.0 --port 8000