Airflow
Server
bash
mkdir airflow_server
mkdir airflow_worker
cd airflow_server
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.10.5/docker-compose.yaml'
# cd airflow_server
# Make expected directories and set an expected environment variable
mkdir -p ./dags ./logs ./plugins
echo -e "AIRFLOW_UID=$(id -u)" > .env
chmod -R 777 ./dags
chmod -R 777 ./logs
chmod -R 777 ./plugins
修改docker-compose.yml
基本上就是增加了一个网络,端口改成配置
yaml
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.10.5
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# AIRFLOW_PROJ_DIR - Base path to which all the files will be volumed.
# Default: .
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Use this option ONLY for quick checks. Installing requirements at container
# startup is done EVERY TIME the service is started.
# A better way is to build a custom image or extend the official image
# as described in https://airflow.apache.org/docs/docker-stack/build.html.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.10.5}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: ${AIRFLOW__CORE__EXECUTOR:-CeleryExecutor}
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://${POSTGRES_USER}:${POSTGRES_PASSWORD}@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://${POSTGRES_USER}:${POSTGRES_PASSWORD}@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:${REDIS_PASSWORD}@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
# yamllint disable rule:line-length
# Use simple http server on scheduler for health checks
# See https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server
# yamllint enable rule:line-length
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
# WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick checks
# for other purpose (development, test and especially production usage) build/extend Airflow image.
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
# The following line can be used to set a custom config file, stored in the local config folder
# If you want to use it, outcomment it and replace airflow.cfg with the name of your config file
# AIRFLOW_CONFIG: '/opt/airflow/config/airflow.cfg'
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: ${POSTGRES_USER}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
POSTGRES_DB: ${POSTGRES_DB}
ports:
- "${POSTGRES_PORT}:5432"
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "${POSTGRES_USER}"]
interval: 10s
retries: 5
start_period: 5s
restart: always
networks:
- airflow-network
redis:
# Redis is limited to 7.2-bookworm due to licencing change
# https://redis.io/blog/redis-adopts-dual-source-available-licensing/
image: redis:7.2-bookworm
command: ["redis-server", "--requirepass", "${REDIS_PASSWORD}"]
ports:
- "${REDIS_PORT}:6379"
healthcheck:
test: ["CMD", "redis-cli", "-a", "${REDIS_PASSWORD}", "ping"]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
networks:
- airflow-network
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- "${WEBSERVER_PORT}:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
networks:
- airflow-network
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8974/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
networks:
- airflow-network
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
# yamllint disable rule:line-length
test:
- "CMD-SHELL"
- 'celery --app airflow.providers.celery.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}" || celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
networks:
- airflow-network
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
networks:
- airflow-network
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_MIGRATE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
networks:
- airflow-network
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
networks:
- airflow-network
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "${FLOWER_PORT}:5555"
environment:
<<: *airflow-common-env
AIRFLOW__CELERY__FLOWER_BASIC_AUTH: "${AIRFLOW_ADMIN_USER}:${AIRFLOW_ADMIN_PASSWORD}"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
networks:
- airflow-network
volumes:
postgres-db-volume:
networks:
airflow-network:
name: airflow-network
driver: bridge
.env
第一行是之前用命令行加进来的
_AIRFLOW_WWW_USER是访问web的账号
AIRFLOW_SERVER_DIR是server目录
AIRFLOW_ADMIN是flower的账号
其他看着修改
bash
AIRFLOW_UID=1000
# pypiserver
PYPI_USER=test
PYPI_PWD=123456
PYPI_HOST=172.27.59.246
PYPI_PORT=10005
AIRFLOW__CORE__EXECUTOR=CeleryExecutor
_AIRFLOW_WWW_USER_USERNAME=airflow
_AIRFLOW_WWW_USER_PASSWORD=123456
AIRFLOW_SERVER_DIR=/home/test/airflow_server
REDIS_PASSWORD=123456
# flower
AIRFLOW_ADMIN_USER=nightmare
AIRFLOW_ADMIN_PASSWORD=123456
# port
REDIS_PORT=16381
WEBSERVER_PORT=18080
FLOWER_PORT=15555
# PostgreSQL
POSTGRES_USER=airflow
POSTGRES_PASSWORD=114514
POSTGRES_DB=airflow
POSTGRES_HOST=172.27.59.246
POSTGRES_PORT=15323
启动server
最后确认一下目录结构
bash
airflow_server
├── .env
├── dags
├── docker-compose.yaml
├── logs
└── plugins
初始化
bash
cd airflow_server
# Initialize the database
docker compose up airflow-init

如果上面正常的话就能正式启动了
bash
# Start up all services
docker compose up -d
# Start up all services + flower
docker compose --profile flower up -d
WebServer http://localhost:18080
账号:airflow
密码:123456
flower http://localhost:15555
账号:nightmare
密码:123456
pg数据库
账号:airflow
密码:114514
如果要清空server
bash
docker compose down -v
docker compose --profile flower down -v
docker network prune -f
worker
dag
airflow_server/dags/dag1/dag1.py
dag都要放在airflow_server/dags下,但是也可以是这个目录的子目录下
例如:
- airflow_server/dags/dag1/dag1.py
- airflow_server/dags/dag1.py
放入后webserver不一定马上就会看到,server会有一个定时扫描,每隔dag_dir_list_interval扫描一次,默认是5min
python
# airflow_server/dags/dag1/dag1.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
# 默认参数里指定使用 dag1_queue
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
'queue': 'dag1_queue', # 👈 这里指定队列
}
def hello_world():
print("Hello from dag1!")
with DAG(
dag_id='dag1',
default_args=default_args,
description='示例 DAG1,仅打印一句话',
schedule_interval='@daily',
start_date=datetime(2025, 1, 1),
catchup=False,
tags=['example'],
) as dag:
task_hello = PythonOperator(
task_id='hello_task',
python_callable=hello_world,
)
task_hello
.env
airflow_worker/dag1/.env
bash
# AIRFLOW_UID=1000
# pypiserver
PYPI_USER=test
PYPI_PWD=123456
PYPI_HOST=172.27.59.246
PYPI_PORT=10005
AIRFLOW__CORE__EXECUTOR=CeleryExecutor
AIRFLOW_SERVER_DIR=/home/test/airflow_server
REDIS_PASSWORD=123456
# PostgreSQL
POSTGRES_USER=airflow
POSTGRES_PASSWORD=114514
POSTGRES_DB=airflow
POSTGRES_HOST=172.27.59.246
POSTGRES_PORT=15323
docker-compose.yml
修改dag1_queue,改成dag中的queue
修改dag1-worker,名字随意
yaml
# airflow_worker/dag1/docker-compose.yaml
version: '3.8'
services:
dag1-worker: # service名字,注意修改
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.10.5}
restart: always
entrypoint:
- /usr/bin/dumb-init
- --
- /start.sh
command:
- celery
- worker
- "-q"
- dag1_queue # dag的queue,注意修改
# - "--hostname"
# - "celery@$$HOSTNAME"
# - "--pool=solo"
environment:
# --------- Airflow 核心配置 ---------
AIRFLOW__CORE__EXECUTOR: ${AIRFLOW__CORE__EXECUTOR}
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://${POSTGRES_USER}:${POSTGRES_PASSWORD}@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:${REDIS_PASSWORD}@redis:6379/0
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://${POSTGRES_USER}:${POSTGRES_PASSWORD}@postgres/airflow
# AIRFLOW__CELERY__WORKER_CONCURRENCY: 1 # 并发数
# 本地 PyPI 源
PIP_INDEX_URL: http://${PYPI_USER}:${PYPI_PWD}@${PYPI_HOST}:${PYPI_PORT}/simple
PIP_TRUSTED_HOST: ${PYPI_HOST}
# 禁用官方 entrypoint 里可能带的 _PIP_ADDITIONAL_REQUIREMENTS
_PIP_ADDITIONAL_REQUIREMENTS: ''
volumes:
- ${AIRFLOW_SERVER_DIR}/dags:/opt/airflow/dags
- ./requirements.txt:/requirements.txt:ro
- ./start.sh:/start.sh:ro
- ${AIRFLOW_SERVER_DIR}/logs:/opt/airflow/logs
- ${AIRFLOW_SERVER_DIR}/config:/opt/airflow/config
- ${AIRFLOW_SERVER_DIR}/plugins:/opt/airflow/plugins
# 下面挂载你们自己的目录和配置文件
# - ./mark.txt:/opt/airflow/cx/mark.txt
# - ./model:/opt/airflow/cx/model
# 不再 depends_on 外部服务,依赖网络连接即可
networks:
- airflow-network
networks:
airflow-network:
external: true
requirements.txt
airflow_worker/dag1/requirements.txt
dag中需要的requirements都需要放进来
requests
start.sh
airflow_worker/dag1/start.sh
用来从pypiserver中安装包,然后启动
bash
#!/usr/bin/env bash
set -e
# 提取实际要安装的包(非注释、非空行)
pkgs=$(grep -E '^[[:space:]]*[^#[:space:]]+' /requirements.txt || true)
if [ -n "$pkgs" ]; then
echo "发现以下需要安装的包:"
echo "$pkgs"
echo "开始安装依赖..."
# 1) 卸载旧依赖(如果不存在也不报错)
pip uninstall -y -r /requirements.txt || true
# 2) 从本地 pypiserver 安装/更新依赖
pip install --no-cache-dir \
-r /requirements.txt \
--index-url "${PIP_INDEX_URL}" \
--trusted-host "${PIP_TRUSTED_HOST}"
# 3) 输出已安装的包版本,方便排查
echo ">>> Installed packages:"
echo "$pkgs" | xargs -n1 pip show
else
echo "无需安装的包,跳过依赖安装。"
fi
# 4) 执行 Airflow 官方 entrypoint 并传入 compose 的 command
exec /entrypoint "$@"
启动worker
wiki
airflow_worker/dag1
├── docker-compose.yml
├── .env
├── requirements.txt
└── start.sh
修改权限,将需要挂载进去的文件(尤其是要写入的)
bash
sudo chmod -R 777 start.sh
sudo chmod -R 777 xxx
bash
docker compose up -d
看看flower里有没有出现
进入WebServer http://localhost:18080
打开这个开关,看看有没有启动,如果没有就刷新一下看看,还没有就点一下右边的三角
添加配置
webserver中
Admin->Connections中
写dag的时候就可以用下面这句来获取这个配置了
python
from airflow.hooks.base import BaseHook
BaseHook.get_connection("prod_redis2")
本地测试
bash
airflow connections add "prod_pg2" --conn-type "Postgres" --conn-host "172.27.59.246" --conn-login "airflow" --conn-password "114514" --conn-port 15323 --conn-schema "airflow"
# for win
airflow connections add "prod_redis2" --conn-type "redis" --conn-host "172.27.59.246" --conn-password "123456" --conn-port 16381 --conn-extra "{""db"": 2}"
# for linux
airflow connections add "prod_redis2" --conn-type "redis" --conn-host "172.27.59.246" --conn-password "123456" --conn-port 16381 --conn-extra '{"db": 2}'
自定义容器
背景:如果你直接打包一个whl到pypiserver,然后安装的话就会发现需要安装的包太多了,尤其是要装torch的时候,因此可以自定义一个容器,以后worker直接用自定义的镜像就会快很多
Dockerfile
bash
# 默认python3.12
FROM apache/airflow:2.10.5
# 安装你需要的 Python 包
COPY requirements.txt /requirements.txt
# 切换回 airflow 用户
# USER airflow
RUN pip install --no-cache-dir -r /requirements.txt --index-url "http://test:[email protected]:10005/simple" --trusted-host "172.27.59.246"
USER airflow
requirements.txt
bash
apache-airflow==2.10.5
# numpy>=2.2.1
pandas==2.1.4
# pyarrow==19.0.0
requests
# shutil
scipy
colorama
psycopg2-binary==2.9.10
torch==2.5.1
scikit-learn>=1.6.1
matplotlib==3.8.4
plotly==5.24.1
redis==5.2.1
openTSNE
schedule
pytz
retrying
opencv-python-headless
pyyaml
clickhouse-connect==0.8.14
tqdm==4.66.2
SQLAlchemy==1.4.54
seaborn>=0.13.0
这里构建一个名为my_airflow的镜像
bash
docker build -t my_airflow .