有监督学习——决策树

任务

1、基于iris_data.csv数据,建立决策树模型,评估模型表现;

2、可视化决策树结构;

3、修改min_samples_leaf参数,对比模型结果

代码工具:jupyter notebook

参考资料

20.23 决策树(1)_哔哩哔哩_bilibili

21.24 决策树(2)_哔哩哔哩_bilibili

博文:https://www.cnblogs.com/zwh0910/p/18708363

数据准备

数据集名称:iris_data.csv

点我转到百度网盘获取数据集 提取码: 8497

复制代码
#加载数据
import pandas as pd
data = pd.read_csv('iris_data.csv')
data.head()
复制代码
X= data.drop(['target','label'], axis = 1)
y = data.loc[:,'label']
print(X.shape, y.shape) #(150, 4) (150,)

建立模型

复制代码
#建立决策树模型
from sklearn import tree
dc_tree = tree.DecisionTreeClassifier(criterion = 'entropy', min_samples_leaf = 5)
#criterion='entropy'也就是采用ID3。min_samples_leaf:叶子节点最少样本数,少于最少样本数就没必要往下分了。
#决策树分裂出来的叶子最少要有5个样本,如果再往下分发现少于5个样本节点就没有必要往下分了
dc_tree.fit(X, y) #
复制代码
#预测
y_predict = dc_tree.predict(X)

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y, y_predict)
print(accuracy)#0.9733333333333334

决策树可视化

复制代码
import matplotlib.pyplot as plt
fig1 = plt.figure(figsize=(10,10))
tree.plot_tree(dc_tree, filled=True, feature_names 
               = ['SepalLength', 'SepalWidth', 'PetalLength','PetalLength','PetalWidth']
               , class_names=['setosa','versicolor','virginica'])
#填充底色, 分类名称
# filled=True表示根据不同的分类加上不同的背景颜色。feature_names是修改属性名称。class_names显示输出类别。

plt.show()
相关推荐
じ☆冷颜〃1 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学1 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
数据大魔方1 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE31 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
楚来客2 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
HyperAI超神经2 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
Echo_NGC22372 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁2 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法