机器学习---各算法比较

机器学习算法

线性回归

优点:简单;适用于大规模数据集。

缺点:无法处理非线性关系;对异常值敏感。

多项式回归

优点:捕捉特征和目标之间的非线性关系。

缺点:可能会过度拟合数据。

岭回归

优点:解决多重共线性问题;对异常值不敏感。

缺点:不适用于特征选择,所有特征都会被考虑。

Lasso回归

优点:解决多重共线性问题。

缺点:对于高维数据,可能会选择较少的特征。

弹性网络回归

优点:综合了岭回归和Lasso回归的优点 ;可以应对多重共线性和特征选择。

缺点:需要调整两个正则化参数。

逻辑回归

优点:用于二分类问题,广泛应用于分类任务。

缺点:仅适用于二分类问题;对于复杂的非线性问题效果可能不佳。

决策树回归

优点:能够处理非线性关系。

缺点:容易过拟合;对数据中的噪声敏感;模型不稳定。

Bagging

优点:降低了模型的方差,减少了过拟合风险;适用于大规模数据。

缺点:不适用于处理高度偏斜的类别分布。

随机森林回归

优点:降低了决策树回归的过拟合风险;能够处理高维数据。

缺点:。。。

AdaBoost

优点:能够处理高维数据和大规模特征,对异常值敏感性较低。

缺点:对噪声和异常值敏感。

Gradient Boosting

优点:提供了很高的预测性能,对噪声和异常值相对较稳定。

缺点:需要调整多个超参数。

XGBoost 和 LightGBM

优点:

缺点:

支持向量机

优点:适用于高维数据。

缺点:参数选择敏感。

相关推荐
颜酱9 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919109 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878389 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz9 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女10 小时前
TRSV优化2
算法
九河云10 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
代码游侠11 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_7634724611 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy11 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异12 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展