机器学习---各算法比较

机器学习算法

线性回归

优点:简单;适用于大规模数据集。

缺点:无法处理非线性关系;对异常值敏感。

多项式回归

优点:捕捉特征和目标之间的非线性关系。

缺点:可能会过度拟合数据。

岭回归

优点:解决多重共线性问题;对异常值不敏感。

缺点:不适用于特征选择,所有特征都会被考虑。

Lasso回归

优点:解决多重共线性问题。

缺点:对于高维数据,可能会选择较少的特征。

弹性网络回归

优点:综合了岭回归和Lasso回归的优点 ;可以应对多重共线性和特征选择。

缺点:需要调整两个正则化参数。

逻辑回归

优点:用于二分类问题,广泛应用于分类任务。

缺点:仅适用于二分类问题;对于复杂的非线性问题效果可能不佳。

决策树回归

优点:能够处理非线性关系。

缺点:容易过拟合;对数据中的噪声敏感;模型不稳定。

Bagging

优点:降低了模型的方差,减少了过拟合风险;适用于大规模数据。

缺点:不适用于处理高度偏斜的类别分布。

随机森林回归

优点:降低了决策树回归的过拟合风险;能够处理高维数据。

缺点:。。。

AdaBoost

优点:能够处理高维数据和大规模特征,对异常值敏感性较低。

缺点:对噪声和异常值敏感。

Gradient Boosting

优点:提供了很高的预测性能,对噪声和异常值相对较稳定。

缺点:需要调整多个超参数。

XGBoost 和 LightGBM

优点:

缺点:

支持向量机

优点:适用于高维数据。

缺点:参数选择敏感。

相关推荐
koo3641 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波1 小时前
机器学习日报02
人工智能·机器学习·neo4j
tainshuai1 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
京东零售技术2 小时前
扛起技术大梁的零售校招生们 | 1024技术人特别篇
算法
爱coding的橙子2 小时前
每日算法刷题Day78:10.23:leetcode 一般树7道题,用时1h30min
算法·leetcode·深度优先
Swift社区2 小时前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者2 小时前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
wperseverance2 小时前
Pytorch常用层总结
深度学习·机器学习
papership3 小时前
【入门级-算法-5、数值处理算法:高精度的减法】
算法·1024程序员节
lingran__3 小时前
算法沉淀第十天(牛客2025秋季算法编程训练联赛2-基础组 和 奇怪的电梯)
c++·算法