机器学习---各算法比较

机器学习算法

线性回归

优点:简单;适用于大规模数据集。

缺点:无法处理非线性关系;对异常值敏感。

多项式回归

优点:捕捉特征和目标之间的非线性关系。

缺点:可能会过度拟合数据。

岭回归

优点:解决多重共线性问题;对异常值不敏感。

缺点:不适用于特征选择,所有特征都会被考虑。

Lasso回归

优点:解决多重共线性问题。

缺点:对于高维数据,可能会选择较少的特征。

弹性网络回归

优点:综合了岭回归和Lasso回归的优点 ;可以应对多重共线性和特征选择。

缺点:需要调整两个正则化参数。

逻辑回归

优点:用于二分类问题,广泛应用于分类任务。

缺点:仅适用于二分类问题;对于复杂的非线性问题效果可能不佳。

决策树回归

优点:能够处理非线性关系。

缺点:容易过拟合;对数据中的噪声敏感;模型不稳定。

Bagging

优点:降低了模型的方差,减少了过拟合风险;适用于大规模数据。

缺点:不适用于处理高度偏斜的类别分布。

随机森林回归

优点:降低了决策树回归的过拟合风险;能够处理高维数据。

缺点:。。。

AdaBoost

优点:能够处理高维数据和大规模特征,对异常值敏感性较低。

缺点:对噪声和异常值敏感。

Gradient Boosting

优点:提供了很高的预测性能,对噪声和异常值相对较稳定。

缺点:需要调整多个超参数。

XGBoost 和 LightGBM

优点:

缺点:

支持向量机

优点:适用于高维数据。

缺点:参数选择敏感。

相关推荐
塔中妖29 分钟前
【华为OD】查找接口成功率最优时间段
算法·链表·华为od
塔中妖32 分钟前
【华为OD】最大子矩阵和
算法·华为od·矩阵
非门由也38 分钟前
《sklearn机器学习——回归指标2》
机器学习·回归·sklearn
Learn Beyond Limits1 小时前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
努力学习的小廉1 小时前
深入了解linux系统—— 线程同步
linux·服务器·数据库·算法
数据爬坡ing1 小时前
从挑西瓜到树回归:用生活智慧理解机器学习算法
数据结构·深度学习·算法·决策树·机器学习
luoganttcc1 小时前
小鹏汽车 vla 算法最新进展和模型结构细节
人工智能·算法·汽车
m0_677034352 小时前
机器学习-异常检测
人工智能·深度学习·机器学习
wallflower20202 小时前
滑动窗口算法在前端开发中的探索与应用
前端·算法
林木辛2 小时前
LeetCode热题 42.接雨水
算法·leetcode