机器学习---各算法比较

机器学习算法

线性回归

优点:简单;适用于大规模数据集。

缺点:无法处理非线性关系;对异常值敏感。

多项式回归

优点:捕捉特征和目标之间的非线性关系。

缺点:可能会过度拟合数据。

岭回归

优点:解决多重共线性问题;对异常值不敏感。

缺点:不适用于特征选择,所有特征都会被考虑。

Lasso回归

优点:解决多重共线性问题。

缺点:对于高维数据,可能会选择较少的特征。

弹性网络回归

优点:综合了岭回归和Lasso回归的优点 ;可以应对多重共线性和特征选择。

缺点:需要调整两个正则化参数。

逻辑回归

优点:用于二分类问题,广泛应用于分类任务。

缺点:仅适用于二分类问题;对于复杂的非线性问题效果可能不佳。

决策树回归

优点:能够处理非线性关系。

缺点:容易过拟合;对数据中的噪声敏感;模型不稳定。

Bagging

优点:降低了模型的方差,减少了过拟合风险;适用于大规模数据。

缺点:不适用于处理高度偏斜的类别分布。

随机森林回归

优点:降低了决策树回归的过拟合风险;能够处理高维数据。

缺点:。。。

AdaBoost

优点:能够处理高维数据和大规模特征,对异常值敏感性较低。

缺点:对噪声和异常值敏感。

Gradient Boosting

优点:提供了很高的预测性能,对噪声和异常值相对较稳定。

缺点:需要调整多个超参数。

XGBoost 和 LightGBM

优点:

缺点:

支持向量机

优点:适用于高维数据。

缺点:参数选择敏感。

相关推荐
爱编程的小吴1 小时前
【力扣练习题】167. 两数之和 II - 输入有序数组
算法·leetcode·职场和发展
sunfove1 小时前
打破物理与算法的边界:超分辨率成像原理深度解析
算法·成像·超分辨城乡
wearegogog1238 小时前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
一只小小汤圆8 小时前
几何算法库
算法
Evand J8 小时前
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
开发语言·算法·matlab
leo__5209 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
忆锦紫9 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
t198751289 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法
guygg889 小时前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
老鼠只爱大米9 小时前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列