NLP助力非结构化文本抽取:实体关系提取实战

一、关键数据分析:微博热帖背后的隐含网络

微博每天产生数百万条内容,这些内容天然包含了大量非结构化文本信息,包括人物、品牌、事件、观点等实体以及它们之间的复杂关系。为了实现"自动识别+归类分析",我们采用如下实体-关系抽取流程:

🧩 目标数据结构化示例:

发帖用户 内容摘要 评论情感 实体1 关系 实体2
用户A 小米汽车上市首日大涨 正面 小米 发布 汽车
用户B 华为和荣耀又要打擂台? 中性 华为 对比 荣耀

我们从微博热搜中抽取:

  • 原始发帖文本
  • 评论区信息
  • 实体关系三元组(如"华为-竞争-荣耀")
  • 情感倾向(正面/负面/中性)

二、核心技术路线图谱

🧠 本项目技术模块如下图所示:

plain 复制代码
┌────────────┐
│ 爬虫代理模块 │────┐
└────────────┘    │
                  ▼
           ┌────────────┐
           │ 请求配置模块 │(含cookie/user-agent)
           └────────────┘
                  │
                  ▼
           ┌────────────┐
           │ 微博页面采集 │(热搜 + 评论)
           └────────────┘
                  │
                  ▼
         ┌─────────────────┐
         │ 中文NLP抽取模块   │(实体识别+关系抽取+情感分析)
         └─────────────────┘
                  │
                  ▼
         ┌─────────────────┐
         │ 数据结构化&可视化 │(保存至CSV/图谱生成)
         └─────────────────┘

三、完整代码演变:从采集到结构化抽取

以下为主要实现代码,已集成爬虫代理设置、实体识别与关系抽取,适合初学者调试和项目集成。

python 复制代码
import requests
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
import time
import random
import jieba
import re
import csv
import spacy
from lxml import etree

# ========== 1. 代理配置(亿牛云代理 www.16yun.cn)==========
proxy_host = "proxy.16yun.cn" # 代理域名
proxy_port = "3100"        # 代理端口 
proxy_user = "16YUN"          #用户名
proxy_pass = "16IP"           #密码

proxies = {
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}"
}

# ========== 2. 请求头设置 ==========
ua = UserAgent()
headers = {
    "User-Agent": ua.random,
    "Cookie": "YOUR_WEIBO_COOKIE"  # 登录后的Cookie,提高访问成功率
}

# ========== 3. 微博热搜采集 ==========
def get_hot_posts():
    url = "https://s.weibo.com/top/summary?cate=realtimehot"
    response = requests.get(url, headers=headers, proxies=proxies)
    response.encoding = 'utf-8'
    soup = BeautifulSoup(response.text, "html.parser")
    links = soup.select("td.td-02 a")
    titles_links = [(a.text.strip(), "https://s.weibo.com" + a.get("href")) for a in links if a.get("href")]
    return titles_links[:5]  # 取前5条热点

# ========== 4. 实体+关系抽取(简单版)==========
def extract_entities(text):
    # 简单规则模拟实体对和关系,后续可引入深度学习模型或Spacy中文模型
    patterns = [
        (r"(小米|华为|荣耀|苹果|比亚迪).{1,5}(发布|对比|上市|合作|竞争).{1,5}(手机|汽车|品牌|产品)", "三元组")
    ]
    results = []
    for pattern, label in patterns:
        match = re.search(pattern, text)
        if match:
            results.append((match.group(1), match.group(2), match.group(3)))
    return results

# ========== 5. 评论情感分析模拟 ==========
def analyze_sentiment(text):
    if any(word in text for word in ["好", "赞", "厉害", "支持"]):
        return "正面"
    elif any(word in text for word in ["差", "垃圾", "不好"]):
        return "负面"
    return "中性"

# ========== 6. 主流程 ==========
def run():
    hot_posts = get_hot_posts()
    results = []
    for title, link in hot_posts:
        time.sleep(random.uniform(1, 3))
        print(f"正在抓取:{title}")
        resp = requests.get(link, headers=headers, proxies=proxies)
        if resp.status_code != 200:
            print("请求失败")
            continue
        soup = BeautifulSoup(resp.text, "html.parser")
        texts = soup.get_text()
        entity_relations = extract_entities(texts)
        sentiment = analyze_sentiment(texts)
        for e1, rel, e2 in entity_relations:
            results.append([title, e1, rel, e2, sentiment])

    # ========== 7. 写入CSV文件 ==========
    with open("weibo_entity_relations.csv", "w", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow(["微博标题", "实体1", "关系", "实体2", "情感"])
        writer.writerows(results)
    print("数据采集完成 🎉")

if __name__ == "__main__":
    run()

四、技术演变模式可视化

👣 版本1.0:正则规则抽取

  • 优点:简单快速,无需训练
  • 缺点:容易漏识/误识,缺乏上下文理解能力

👣 版本2.0(可扩展):BERT-BiLSTM-CRF或Prompt式实体关系识别

  • 支持微调中文预训练模型
  • 可用开源库如LTP, HanLP, Spacy-zh, BERT4NER

五、总结

💡 本文用一套「微博热帖 → 文本抽取 → 实体关系 → 情感标注」的完整流程,验证了中文非结构化文本的NLP实战价值。

相关推荐
九年义务漏网鲨鱼4 小时前
【大模型面经】千问系列专题面经
人工智能·深度学习·算法·大模型·强化学习
北京耐用通信4 小时前
“耐达讯自动化Profibus总线光端机在化工变频泵控制系统中的应用与价值解析”
人工智能·科技·物联网·网络安全·自动化·信息与通信
2401_865854884 小时前
AI软件可以帮助我自动化哪些日常任务?
运维·人工智能·自动化
WWZZ20255 小时前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
简佐义的博客6 小时前
Genome Biol. IF 9.4 Q1 | ATAC-seq 数据分析实用指南,根据本文就可以构建ATAC生信分析流程了
人工智能
老蒋新思维6 小时前
陈修超入局:解锁 AI 与 IP 融合的创新增长密码
网络·人工智能·网络协议·tcp/ip·企业管理·知识付费·创客匠人
San30.6 小时前
从代码规范到 AI Agent:现代前端开发的智能化演进
javascript·人工智能·代码规范
DO_Community6 小时前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程
HeteroCat7 小时前
关于No Chatbot的思考
人工智能
咚咚王者7 小时前
人工智能之数据分析 numpy:第一章 学习链路
人工智能·数据分析·numpy