机器学习:线性回归、损失函数、导数、偏导

本文目录:

一、线性回归

线性回归:利用 回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式;

一元线性回归:目标值只与一个自变量有关系;

多元线性回归:目标值与多个自变量有关系。

线性回归流程图:

二、损失函数

误差:用预测值y -- 真实值y就是误差;

损失函数:衡量每个样本预测值与真实值效果的函数。

回归的损失函数:

  • 均方误差 *(Mean-Square Error, MSE )

  • 平均绝对误差 (Mean Absolute Error , MAE)

    备注:h(x)为y的预测值。

三、导数与偏导

(一)导数

1.基本概念

导数 :当函数y=f(x)的自变量x在一点 x 0 x_0 x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在 x 0 x_0 x0处的导数,记作 f ′ ( x 0 ) f^\prime(x_0) f′(x0)或df( x 0 x_0 x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

2.常用导数

3.求导的常用运算法则

(1)四则运算

(2)复合函数求导(链式法则)


导数求极值:当导数等于0时,往往就是函数的极值点

例:

(二)偏导

当存在多个自变量时,只对其中一个自变量求导,同时将其它自变量视为常量的情况理解为求偏导。

通常表示为:

举例:

相关推荐
没有梦想的咸鱼185-1037-166314 分钟前
SWMM排水管网水力、水质建模及在海绵与水环境中的应用
数据仓库·人工智能·数据挖掘·数据分析
codeyanwu19 分钟前
nanoGPT 部署
python·深度学习·机器学习
即兴小索奇21 分钟前
【无标题】
人工智能·ai·商业·ai商业洞察·即兴小索奇
国际学术会议-杨老师36 分钟前
2025年计算机视觉与图像国际会议(ICCVI 2025)
人工智能·计算机视觉
欧阳小猜1 小时前
深度学习②【优化算法(重点!)、数据获取与模型训练全解析】
人工智能·深度学习·算法
fsnine1 小时前
深度学习——神经网络
人工智能·深度学习·神经网络
有Li1 小时前
CXR-LT 2024:一场关于基于胸部X线的长尾、多标签和零样本疾病分类的MICCAI挑战赛|文献速递-深度学习人工智能医疗图像
论文阅读·人工智能·算法·医学生
的小姐姐1 小时前
AI与IIOT如何重新定义设备维护系统?_璞华大数据Hawkeye平台
大数据·人工智能
arron88991 小时前
(双类别检测:电动车 + 头部,再对头部分类)VS 单类别检测 + ROI 分类器 方案
人工智能
Johny_Zhao2 小时前
Linux防止rm误操作防护方案
linux·网络·人工智能·网络安全·信息安全·云计算·yum源·系统运维