Spring AI 多模型智能协作工作流实现指南
说明
本文档旨在指导开发者基于 Spring AI 框架,在 Spring Boot 2 环境下集成多种主流大语言模型(如 OpenAI ChatGPT、Deepseek、阿里云通义千问等),并提供从环境配置、模型调用、流式输出到提示模板与异常处理的完整使用示例。文中示例适配 Spring AI 进行开发。本教程适用于对 LLM 应用开发有一定基础的 Java 工程师,亦可作为企业多模型接入与管理的实现参考。
1. 系统架构概述
本方案基于 Spring AI 框架,构建了一个多模型协作的工作流系统,通过 ChatGPT、Deepseek 和通义千问三大模型的优势互补,实现从原始输入到高质量输出的完整处理流程。
以下是基于Mermaid语法的工作流架构图,您可以直接复制到支持Mermaid的Markdown编辑器(如Typora、VS Code插件等)中查看:
异常处理 模型协作工作流 成功 失败 JSON格式 生成草稿 降级处理 使用默认关键词 解析JSON结果 ChatGPT关键词提取 通义千问文本润色 Deepseek内容生成 用户输入文本 最终输出结果
架构图说明:
-
流程图元素:
- 矩形框:表示处理步骤
- 菱形框:表示判断/解析节点
- 子图:标识不同处理阶段
- 样式:区分输入/输出节点
-
工作流步骤:
A B C D F G E
-
带详细说明的版本:
原始文本 JSON格式 成功 失败 初稿内容 用户输入 ChatGPT处理器 解析结果? 提取关键词+意图 使用默认值 Deepseek生成器 通义千问润色器 最终输出
关键路径说明:
-
正常流程:
用户输入 → ChatGPT提取 → 解析JSON → Deepseek生成 → 通义千问润色 → 输出
-
异常流程:
解析失败 → 使用默认关键词 → 继续后续流程
-
组件职责:
- ChatGPT:结构化理解输入文本
- Deepseek:基于结构化数据生成内容
- 通义千问:优化表达质量
部署架构图(补充)
云服务 HTTP请求 API调用 API调用 API调用 OpenAI Cloud Deepseek API 阿里云通义千问 客户端 Spring Boot API Redis缓存 数据库
2. 环境配置
2.1 Maven 依赖配置
xml
<dependencies>
<!-- Spring Boot Starter -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.7.18</version>
</dependency>
<!-- Spring AI Core -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-core</artifactId>
<version>0.8.1</version>
</dependency>
<!-- OpenAI Starter -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<!-- 阿里云通义千问 -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter</artifactId>
<version>1.0.0-M2</version>
</dependency>
<!-- JSON 处理 -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
</dependency>
<!-- 日志记录 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>
</dependency>
</dependencies>
2.2 应用配置 (application.yml)
yaml
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
model: gpt-4-turbo
temperature: 0.7
max-tokens: 1000
alibaba:
dashscope:
api-key: ${TONGYI_API_KEY}
model: qwen-max
temperature: 0.8
deepseek:
api-key: ${DEEPSEEK_API_KEY}
base-url: https://api.deepseek.com/v1
model: deepseek-chat
app:
workflow:
max-retries: 3
retry-delay: 1000
timeout: 30000
3. 核心组件实现
3.1 模型任务定义
java
@Data
@AllArgsConstructor
@NoArgsConstructor
public class ModelTask {
private String taskId;
private TaskType type;
private String input;
private Map<String, Object> params;
public enum TaskType {
KEYWORD_EXTRACTION, // 关键词提取
CONTENT_GENERATION, // 内容生成
TEXT_POLISHING // 文本润色
}
}
3.2 模型执行器接口
java
public interface ModelExecutor {
/**
* 执行模型任务
* @param task 模型任务
* @return 执行结果
* @throws ModelExecutionException 模型执行异常
*/
String execute(ModelTask task) throws ModelExecutionException;
/**
* 支持的模型类型
*/
ModelTask.TaskType supportedType();
}
3.3 ChatGPT 执行器实现 (关键词提取)
java
@Service
@Slf4j
public class ChatGPTExecutor implements ModelExecutor {
@Autowired
private OpenAiChatClient chatClient;
@Override
public String execute(ModelTask task) throws ModelExecutionException {
try {
String prompt = buildExtractionPrompt(task.getInput());
log.info("Executing ChatGPT task with prompt: {}", prompt);
String response = chatClient.call(prompt);
log.info("ChatGPT response: {}", response);
return parseJsonResponse(response);
} catch (Exception e) {
log.error("ChatGPT execution failed", e);
throw new ModelExecutionException("ChatGPT processing failed", e);
}
}
private String buildExtractionPrompt(String input) {
return """
请从以下文本中提取结构化信息,按JSON格式返回:
{
"keywords": ["关键词1", "关键词2", ...], // 5-10个核心关键词
"intent": "用户意图描述", // 用户的主要目的
"sentiment": "positive/neutral/negative" // 情感倾向
}
输入文本:
""" + input;
}
private String parseJsonResponse(String response) {
// 简化的JSON解析,实际项目中应使用Jackson等库
if (response.startsWith("{") && response.endsWith("}")) {
return response;
}
// 处理非标准JSON响应
return response.replaceFirst(".*?(\\{.*\\}).*", "$1");
}
@Override
public ModelTask.TaskType supportedType() {
return ModelTask.TaskType.KEYWORD_EXTRACTION;
}
}
3.4 Deepseek 执行器实现 (内容生成)
java
@Service
@Slf4j
public class DeepseekExecutor implements ModelExecutor {
@Value("${deepseek.api-key}")
private String apiKey;
@Value("${deepseek.base-url}")
private String baseUrl;
@Value("${deepseek.model}")
private String model;
private final RestClient restClient;
public DeepseekExecutor() {
this.restClient = RestClient.builder()
.baseUrl(baseUrl)
.defaultHeader("Authorization", "Bearer " + apiKey)
.build();
}
@Override
public String execute(ModelTask task) throws ModelExecutionException {
try {
Map<String, Object> requestBody = buildRequest(task);
log.info("Sending request to Deepseek: {}", requestBody);
ResponseEntity<Map> response = restClient.post()
.uri("/chat/completions")
.body(requestBody)
.retrieve()
.toEntity(Map.class);
return extractContent(response.getBody());
} catch (Exception e) {
log.error("Deepseek API call failed", e);
throw new ModelExecutionException("Deepseek processing failed", e);
}
}
private Map<String, Object> buildRequest(ModelTask task) {
return Map.of(
"model", model,
"messages", List.of(
Map.of("role", "system", "content", "你是一个专业的内容生成助手"),
Map.of("role", "user", "content", task.getInput())
),
"temperature", 0.7,
"max_tokens", 2000
);
}
private String extractContent(Map<String, Object> response) {
// 简化处理,实际项目需要更健壮的解析
return ((Map)((List)response.get("choices")).get(0))
.get("message").toString();
}
@Override
public ModelTask.TaskType supportedType() {
return ModelTask.TaskType.CONTENT_GENERATION;
}
}
3.5 通义千问执行器实现 (文本润色)
java
@Service
@Slf4j
public class TongyiExecutor implements ModelExecutor {
@Autowired
private TongyiChatClient chatClient;
@Override
public String execute(ModelTask task) throws ModelExecutionException {
try {
String polishPrompt = buildPolishPrompt(task.getInput());
log.info("Executing Tongyi polishing with prompt: {}", polishPrompt);
String response = chatClient.call(polishPrompt);
log.info("Tongyi polished response: {}", response);
return response;
} catch (Exception e) {
log.error("Tongyi polishing failed", e);
throw new ModelExecutionException("Tongyi polishing failed", e);
}
}
private String buildPolishPrompt(String input) {
return """
请对以下文本进行专业的中文润色,要求:
1. 保持原意不变
2. 优化表达流畅度
3. 使用更专业的词汇
4. 适当调整句式结构
5. 确保语法正确
需要润色的文本:
""" + input;
}
@Override
public ModelTask.TaskType supportedType() {
return ModelTask.TaskType.TEXT_POLISHING;
}
}
4. 工作流协调器
java
@Service
@Slf4j
public class WorkflowCoordinator {
@Autowired
private List<ModelExecutor> executors;
@Value("${app.workflow.max-retries}")
private int maxRetries;
@Value("${app.workflow.retry-delay}")
private long retryDelay;
@Value("${app.workflow.timeout}")
private long timeout;
private final Map<ModelTask.TaskType, ModelExecutor> executorMap = new HashMap<>();
@PostConstruct
public void init() {
executors.forEach(executor ->
executorMap.put(executor.supportedType(), executor));
}
@Retryable(maxAttempts = 3, backoff = @Backoff(delay = 1000))
public String processWorkflow(String userInput) throws WorkflowException {
long startTime = System.currentTimeMillis();
String taskId = UUID.randomUUID().toString();
try {
// 阶段1: 关键词提取
ModelTask extractionTask = new ModelTask(
taskId,
ModelTask.TaskType.KEYWORD_EXTRACTION,
userInput,
Map.of("format", "json")
);
String extractionResult = executeWithTimeout(
executorMap.get(ModelTask.TaskType.KEYWORD_EXTRACTION),
extractionTask
);
// 阶段2: 内容生成
String generationPrompt = buildGenerationPrompt(extractionResult);
ModelTask generationTask = new ModelTask(
taskId,
ModelTask.TaskType.CONTENT_GENERATION,
generationPrompt,
Map.of("length", "medium")
);
String generatedContent = executeWithTimeout(
executorMap.get(ModelTask.TaskType.CONTENT_GENERATION),
generationTask
);
// 阶段3: 文本润色
ModelTask polishingTask = new ModelTask(
taskId,
ModelTask.TaskType.TEXT_POLISHING,
generatedContent,
Map.of("style", "professional")
);
String finalResult = executeWithTimeout(
executorMap.get(ModelTask.TaskType.TEXT_POLISHING),
polishingTask
);
log.info("Workflow completed in {} ms",
System.currentTimeMillis() - startTime);
return finalResult;
} catch (TimeoutException e) {
throw new WorkflowException("Workflow timed out", e);
} catch (Exception e) {
throw new WorkflowException("Workflow execution failed", e);
}
}
private String executeWithTimeout(ModelExecutor executor, ModelTask task)
throws Exception {
ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(() -> executor.execute(task));
try {
return future.get(timeout, TimeUnit.MILLISECONDS);
} finally {
executorService.shutdown();
}
}
private String buildGenerationPrompt(String extractionResult) {
try {
JSONObject json = new JSONObject(extractionResult);
String keywords = String.join(", ", json.getJSONArray("keywords").toList());
String intent = json.getString("intent");
return String.format("根据以下关键词和意图生成专业内容:\n关键词: %s\n意图: %s",
keywords, intent);
} catch (Exception e) {
log.warn("Failed to parse extraction result, using raw input");
return "根据以下信息生成专业内容:\n" + extractionResult;
}
}
}
5. REST 控制器
java
@RestController
@RequestMapping("/api/ai-workflow")
@Slf4j
public class WorkflowController {
@Autowired
private WorkflowCoordinator workflowCoordinator;
@PostMapping("/process")
public ResponseEntity<?> processInput(@RequestBody String userInput) {
try {
log.info("Received processing request: {}", userInput);
String result = workflowCoordinator.processWorkflow(userInput);
return ResponseEntity.ok(result);
} catch (WorkflowException e) {
log.error("Workflow processing error", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(Map.of(
"error", "Processing failed",
"message", e.getMessage()
));
}
}
@GetMapping("/status")
public ResponseEntity<?> getStatus() {
return ResponseEntity.ok(Map.of(
"status", "operational",
"models", List.of("ChatGPT", "Deepseek", "Tongyi")
));
}
}
6. 异常处理
java
@ControllerAdvice
@Slf4j
public class GlobalExceptionHandler {
@ExceptionHandler(WorkflowException.class)
public ResponseEntity<?> handleWorkflowException(WorkflowException ex) {
log.error("Workflow error occurred: {}", ex.getMessage());
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(Map.of(
"error", "AI Workflow Error",
"message", ex.getMessage(),
"timestamp", Instant.now()
));
}
@ExceptionHandler(ModelExecutionException.class)
public ResponseEntity<?> handleModelException(ModelExecutionException ex) {
log.error("Model execution failed: {}", ex.getMessage());
return ResponseEntity.status(HttpStatus.BAD_GATEWAY)
.body(Map.of(
"error", "Model Execution Error",
"message", "One of the AI models failed to process the request",
"timestamp", Instant.now()
));
}
}
7. 测试用例
java
@SpringBootTest
@ActiveProfiles("test")
@Slf4j
public class WorkflowIntegrationTest {
@Autowired
private WorkflowCoordinator workflowCoordinator;
@Test
public void testFullWorkflow() {
String input = "用户反馈:新版App的语音识别功能很准确,但耗电量较大,希望优化电池使用效率";
try {
String result = workflowCoordinator.processWorkflow(input);
log.info("Workflow result:\n{}", result);
assertNotNull(result);
assertTrue(result.length() > 50);
assertTrue(result.contains("语音识别") || result.contains("耗电"));
} catch (WorkflowException e) {
fail("Workflow execution failed: " + e.getMessage());
}
}
@Test
public void testTimeoutHandling() {
// 模拟超时场景的测试
assertThrows(WorkflowException.class, () -> {
workflowCoordinator.processWorkflow("test timeout");
});
}
}
8. 部署与监控建议
8.1 Prometheus 监控配置
yaml
# application.yml 添加监控配置
management:
endpoints:
web:
exposure:
include: health,info,metrics,prometheus
metrics:
export:
prometheus:
enabled: true
tags:
application: ai-workflow
8.2 关键指标监控
- 工作流执行时间
- 各模型调用成功率
- API响应时间
- 错误率统计
- Token使用量
9. 性能优化建议
-
缓存层:对常见查询结果实现缓存
java@Cacheable(value = "aiResponses", key = "#userInput.hashCode()") public String processWorkflow(String userInput) { ... }
-
批量处理:支持批量输入处理
-
异步处理:对耗时任务实现异步API
java@Async public CompletableFuture<String> processAsync(String input) { ... }
-
连接池配置:优化HTTP连接池
yamlspring: ai: openai: rest: connection-timeout: 5000 read-timeout: 30000 max-connections: 100
10. 安全建议
-
API密钥轮换:定期更新各模型API密钥
-
输入过滤:防止Prompt注入攻击
javapublic String sanitizeInput(String input) { return input.replaceAll("[<>\"']", ""); }
-
访问控制:实现API访问认证
-
请求限流:防止滥用
总结
本实现方案展示了如何利用 Spring AI 框架构建一个多模型协作的智能工作流系统,具有以下特点:
- 模块化设计:各模型执行器相互独立,易于扩展
- 弹性处理:完善的错误处理和重试机制
- 性能可控:超时管理和异步支持
- 可观测性:完善的日志和监控支持
- 生产就绪:包含安全、缓存等生产环境所需功能
通过这种架构,您可以灵活地替换或添加新的AI模型,同时保持业务逻辑的一致性,为构建企业级AI应用提供了可靠的基础框架。