【LightRAG:轻量级检索增强生成框架】

LightRAG:轻量级检索增强生成框架

概述

LightRAG 是由香港大学数据科学实验室开发的一个开源项目,它通过结合知识图谱和向量检索技术,优化了传统检索增强生成(Retrieval-Augmented Generation, RAG)系统在处理复杂知识关系和检索效率方面的不足。LightRAG 旨在提供一个简单、快速且高效的解决方案,特别适合资源受限的场景,如移动设备或边缘计算环境。

核心流程

LightRAG 的工作流程可以分为以下几个步骤:

  1. 实体和关系提取

    使用大型语言模型(LLM)分析文档,自动识别出文本中的实体及其关系,并将这些信息转化为键值对。

  2. 图基文本索引

    提取的信息被组织成图结构,其中实体作为节点,关系作为边,形成高效查询的信息网络。

  3. 双层检索范式

    用户查询时,系统首先进行局部关键词匹配,然后是全局关键词匹配,以全面覆盖信息。

  4. 答案生成与上下文整合

    系统根据检索到的信息生成最终的答案,并确保其逻辑连贯、信息准确 。

架构图

与GraphRAG的区别

  • 架构设计

    GraphRAG 更加注重于构建复杂的知识图谱,适用于需要多跳推理的任务,而 LightRAG 则强调轻量化和高效性,适合实时性和资源受限的应用 。

  • 性能与成本

    GraphRAG 对硬件要求较高,响应速度相对较慢,但提供了强大的推理能力;相比之下,LightRAG 计算复杂度低,支持在低算力设备上运行,响应速度快 。

  • 适用场景

    GraphRAG 更适合用于医疗诊断、法律咨询等需要深度推理的领域;而 LightRAG 更适合实时问答系统、个人助理等需要快速响应的应用 。

适用场景

  • 搜索引擎优化

    增强搜索引擎的查询处理能力,提供更准确和相关的搜索结果 。

  • 智能客服系统

    在客户服务领域,理解客户的复杂查询,提供详尽、准确的回答,提高客户满意度 。

  • 推荐系统

    整合用户行为和产品信息,提供个性化的推荐,增强用户体验 。

示例代码

以下是一个简单的示例代码,展示了如何使用 LightRAG 进行初始化、插入文本以及执行查询。

python 复制代码
import os
import asyncio
from lightRAG import LightRAG, QueryParam

WORKING_DIR = "./your_project_directory"

async def initialize_rag():
    rag = LightRAG(
        working_dir=WORKING_DIR,
        embedding_func=openai_embedding, # 需要定义您的嵌入函数
        llm_model_func=gpt_4o_mini_complete # 需要定义您的LLM模型函数
    )
    await rag.initialize_storages()
    return rag

def main():
    rag = asyncio.run(initialize_rag())
    
    # 插入文本
    rag.insert("Your text here.")
    
    # 执行查询
    query = "What are the top themes in this story?"
    result = rag.query(query, param=QueryParam(mode="global"))
    print(result)

if __name__ == "__main__":
    main()
相关推荐
__如果1 小时前
深度学习复习笔记
人工智能·笔记·深度学习
weixin_549808362 小时前
易路 iBuilder:解构企业 AI 落地困境,重构智能体时代生产力范式
人工智能·重构
struggle20253 小时前
OramaCore 是您 AI 项目、答案引擎、副驾驶和搜索所需的 AI 运行时。它包括一个成熟的全文搜索引擎、矢量数据库、LLM界面和更多实用程序
人工智能·python·rust
zdy12635746884 小时前
python37天打卡
人工智能·深度学习·算法
chicpopoo4 小时前
Python打卡DAY40
人工智能·python·机器学习
yes or ok5 小时前
二、OpenCV图像处理-图像处理
图像处理·人工智能·opencv
Hygge-star5 小时前
【Java进阶】图像处理:从基础概念掌握实际操作
java·图像处理·人工智能·程序人生·职场和发展
开利网络5 小时前
数据资产化浪潮下,企业如何构建去中心化商业新生态?
大数据·数据库·人工智能·信息可视化·重构
jndingxin5 小时前
OpenCV CUDA模块直方图计算------用于在 GPU 上执行对比度受限的自适应直方图均衡类cv::cuda::CLAHE
人工智能·opencv·计算机视觉
小饼干超人6 小时前
手写multi-head Self-Attention,各个算子详细注释版
人工智能·深度学习·机器学习