深度学习-梯度消失和梯度爆炸

梯度消失

在某些神经网络中,随着网络深度的增加,梯度在隐藏层反向传播时倾向于变小,这就意味着,前面隐藏层中的神经元要比后面的学习起来更慢,这种现象就叫做"梯度消失";

梯度爆炸

如果我们进行一些特殊的调整(比如初始权重很大),可以让梯度反向传播时不会明显减小,从而解决梯度消失的问题;然而这样一来,前面层的梯度又会变得非常大,引起网络不稳定,无法再从训练数据中学习,这种现象又叫做"梯度爆炸"。

为了让深度神经网络的学习更加稳定、高效,我们需要考虑进一步改进寻找最优参数的方法,以及如何设置参数初始值、如何设定超参数;此外还应该解决过拟合的问题。

相关推荐
童话名剑3 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美4 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了5 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu5 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_5 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐6 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai6 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120156 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。6 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI6 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染