深度学习-梯度消失和梯度爆炸

梯度消失

在某些神经网络中,随着网络深度的增加,梯度在隐藏层反向传播时倾向于变小,这就意味着,前面隐藏层中的神经元要比后面的学习起来更慢,这种现象就叫做"梯度消失";

梯度爆炸

如果我们进行一些特殊的调整(比如初始权重很大),可以让梯度反向传播时不会明显减小,从而解决梯度消失的问题;然而这样一来,前面层的梯度又会变得非常大,引起网络不稳定,无法再从训练数据中学习,这种现象又叫做"梯度爆炸"。

为了让深度神经网络的学习更加稳定、高效,我们需要考虑进一步改进寻找最优参数的方法,以及如何设置参数初始值、如何设定超参数;此外还应该解决过拟合的问题。

相关推荐
可触的未来,发芽的智生9 分钟前
触摸未来2025.10.04:当神经网络拥有了内在记忆……
人工智能·python·神经网络·算法·架构
PKNLP16 分钟前
深度学习之神经网络2(Neural Network)
人工智能·深度学习·神经网络
格林威28 分钟前
常规的变焦镜头有哪些类型?能做什么?
人工智能·数码相机·opencv·计算机视觉·视觉检测·机器视觉·工业镜头
心无旁骛~1 小时前
【OpenArm|Control】openarm机械臂ROS2仿真控制
人工智能·ros
程序员陆业聪2 小时前
AI智能体的未来:从语言泛化到交互革命
人工智能
小小程序媛(*^▽^*)2 小时前
第十二届全国社会媒体处理大会笔记
人工智能·笔记·学习·ai
却道天凉_好个秋2 小时前
OpenCV(二):加载图片
人工智能·opencv·计算机视觉
音视频牛哥2 小时前
系统级超低延迟音视频直播模块时代:如何构建可控、可扩展的实时媒体底座
人工智能·音视频·大牛直播sdk·rtsp播放器·rtmp播放器·rtsp服务器·rtmp同屏推流
学無芷境2 小时前
VOCO摘要
人工智能
格林威2 小时前
机器视觉的工业镜头有哪些?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头