深度学习-梯度消失和梯度爆炸

梯度消失

在某些神经网络中,随着网络深度的增加,梯度在隐藏层反向传播时倾向于变小,这就意味着,前面隐藏层中的神经元要比后面的学习起来更慢,这种现象就叫做"梯度消失";

梯度爆炸

如果我们进行一些特殊的调整(比如初始权重很大),可以让梯度反向传播时不会明显减小,从而解决梯度消失的问题;然而这样一来,前面层的梯度又会变得非常大,引起网络不稳定,无法再从训练数据中学习,这种现象又叫做"梯度爆炸"。

为了让深度神经网络的学习更加稳定、高效,我们需要考虑进一步改进寻找最优参数的方法,以及如何设置参数初始值、如何设定超参数;此外还应该解决过拟合的问题。

相关推荐
学电子她就能回来吗3 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow3 分钟前
model training platform
人工智能
爱吃泡芙的小白白4 分钟前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
人道领域11 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱15 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能
qq_124987075333 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_36 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
L、21837 分钟前
CANN 中的图优化技术详解:如何让 AI 模型跑得更快、更省
人工智能
大模型玩家七七39 分钟前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
新缸中之脑41 分钟前
像画家一样编程
人工智能