深度学习-梯度消失和梯度爆炸

梯度消失

在某些神经网络中,随着网络深度的增加,梯度在隐藏层反向传播时倾向于变小,这就意味着,前面隐藏层中的神经元要比后面的学习起来更慢,这种现象就叫做"梯度消失";

梯度爆炸

如果我们进行一些特殊的调整(比如初始权重很大),可以让梯度反向传播时不会明显减小,从而解决梯度消失的问题;然而这样一来,前面层的梯度又会变得非常大,引起网络不稳定,无法再从训练数据中学习,这种现象又叫做"梯度爆炸"。

为了让深度神经网络的学习更加稳定、高效,我们需要考虑进一步改进寻找最优参数的方法,以及如何设置参数初始值、如何设定超参数;此外还应该解决过拟合的问题。

相关推荐
HelloRevit25 分钟前
机器学习、深度学习、大模型 是什么关系?
人工智能·深度学习·机器学习
共享笔记30 分钟前
Adobe Photoshop Elements 2026 正式发布:AI 引擎让修图更简单!
人工智能·adobe·photoshop
芝士AI吃鱼33 分钟前
我为什么做了 Cogniflow?一个开发者关于“信息流”的思考与实践
人工智能·后端·aigc
Juchecar1 小时前
文字与电的相似性:中间载体
人工智能
kyle-fang1 小时前
pytorch-张量
人工智能·pytorch·python
算家计算1 小时前
告别繁琐文档处理!PaddleOCR-VL-vLLM-OpenAI-API本地部署教程:精准解析文本/表格/公式
人工智能·开源
woshihonghonga1 小时前
Dropout提升模型泛化能力【动手学深度学习:PyTorch版 4.6 暂退法】
人工智能·pytorch·python·深度学习·机器学习
java1234_小锋1 小时前
PyTorch2 Python深度学习 - 循环神经网络(RNN)实例
python·rnn·深度学习·pytorch2
该用户已不存在1 小时前
AI编程工具大盘点,哪个最适合你
前端·人工智能·后端
Danceful_YJ1 小时前
28. 门控循环单元(GRU)的实现
pytorch·python·深度学习