DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

abstract

LLM 预测连续embedding,直接接DiT。和kaiming-Autoregressive Image Generation without Vector Quantization的文章思路一样。- LLM是casual attention,和diffusion 一起训练,相比于full attention会有性能的降低。因此采用【分而治之】的方法------长序列的连续tokens被分成多个patches;只有diffusion loss+stop loss;

离散token 更适用于文本任务,图片/视频/音频等高清生成更适合连续向量。过往的方法要么效果不好(casual attention),要么计算开销很大。

method

model

  • VAE 训练得到连续embedding;decoder 用bigVAGN 重建得到音频;24k 音频编码成40hz,dim=64

  • LocDiT 输入AR's output 生成下一个patch对应的speech,但是diffusion 在这些条件下很难预测下一个patch的信息;为了解决这一问题,如图1右,之前的patch 作为prefix,因此让任务和outpaiting & context-learning potential 更相关,也改善了生成性能。(4.4 详述)

  • 也隐含了一个coarse-to-fine 的过程;

  • CFG 需要两次计算,如果对LLM 算两次,开销很大,本文提出一次LM 计算和两次diffusion 计算。

python 复制代码
# infer的时候,with_condition & wo_condition 推理两次
# train的时候,0.1的概率将LM的输出置为0,模拟wo_condition的状态,loss 函数正常计算
# pred = diffusion(zero, z) loss = mse(pre, target)
def cfg_guidance(z, hi, h∅, w):
    # 无条件输出
    uncond_output = diffusion_model(z, h∅)
    # 有条件输出
    cond_output = diffusion_model(z, hi)
    # CFG 调整, w控制向文本/LM condition偏移的程度
    final_output = (1 + w) * cond_output - w * uncond_output
    return final_output

# 温度系数,温度 τ 调整噪声引入的时间点,影响生成结果的多样性
if τ == 1:
    noise = normal_distribution()  # 纯噪声
elif 0 < τ < 1:
    noise = apply_diffusion(z0, τ)  # 基于温度的噪声

experiment

patch size


  • 当补丁大小太大或太小时,性能会下降。过小的补丁会降低模型的双向注意力能力,迫使依赖因果注意力 AR 并降低性能。相反,过大的补丁会使 LocDiT 成为瓶颈,需要增加参数。
  • The Number of Historical Patches of LocDiT

temperature

较高的温度会产生略高的 SIM 分数,而较低的温度会产生更好的 WER 分数。根本原因可能是,模拟看不见的说话者的声音需要模型具有更大的多样性,而发音稳健性需要模型具有更多的确定性和稳定性。

相关推荐
bright_colo3 分钟前
Python-初学openCV——图像预处理(七)——亮度变换、形态学变换
人工智能·opencv·计算机视觉
CODE_RabbitV13 分钟前
如何让 RAG 检索更高效?——大模型召回策略全解
人工智能·算法·机器学习
一点一木18 分钟前
PromptPilot 与豆包新模型:从图片到视频,解锁 AI 新玩法
前端·人工智能
盼小辉丶27 分钟前
TensorFlow深度学习实战(28)——扩散模型(Diffusion Model)
深度学习·tensorflow·生成模型
aneasystone本尊27 分钟前
实战 Coze Studio 智能体开发
人工智能
max50060039 分钟前
复现论文《A Fiber Bragg Grating Sensor System for Train Axle Counting》
开发语言·python·深度学习·机器学习·matlab·transformer·机器翻译
无规则ai40 分钟前
数字图像处理(冈萨雷斯)第三版:第四章——频率域滤波(学前了解知识)——主要内容和重点
人工智能·算法·机器学习·计算机视觉
三道杠卷胡1 小时前
【AI News | 20250804】每日AI进展
人工智能·python·语言模型·github·aigc
蓝屏的钙2 小时前
从 FastGPT 中浅析 RAG 技术
人工智能·llm
max5006002 小时前
基于开源人脸识别模型实现情绪识别功能
python·深度学习·开源·transformer