DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

abstract

LLM 预测连续embedding,直接接DiT。和kaiming-Autoregressive Image Generation without Vector Quantization的文章思路一样。- LLM是casual attention,和diffusion 一起训练,相比于full attention会有性能的降低。因此采用【分而治之】的方法------长序列的连续tokens被分成多个patches;只有diffusion loss+stop loss;

离散token 更适用于文本任务,图片/视频/音频等高清生成更适合连续向量。过往的方法要么效果不好(casual attention),要么计算开销很大。

method

model

  • VAE 训练得到连续embedding;decoder 用bigVAGN 重建得到音频;24k 音频编码成40hz,dim=64

  • LocDiT 输入AR's output 生成下一个patch对应的speech,但是diffusion 在这些条件下很难预测下一个patch的信息;为了解决这一问题,如图1右,之前的patch 作为prefix,因此让任务和outpaiting & context-learning potential 更相关,也改善了生成性能。(4.4 详述)

  • 也隐含了一个coarse-to-fine 的过程;

  • CFG 需要两次计算,如果对LLM 算两次,开销很大,本文提出一次LM 计算和两次diffusion 计算。

python 复制代码
# infer的时候,with_condition & wo_condition 推理两次
# train的时候,0.1的概率将LM的输出置为0,模拟wo_condition的状态,loss 函数正常计算
# pred = diffusion(zero, z) loss = mse(pre, target)
def cfg_guidance(z, hi, h∅, w):
    # 无条件输出
    uncond_output = diffusion_model(z, h∅)
    # 有条件输出
    cond_output = diffusion_model(z, hi)
    # CFG 调整, w控制向文本/LM condition偏移的程度
    final_output = (1 + w) * cond_output - w * uncond_output
    return final_output

# 温度系数,温度 τ 调整噪声引入的时间点,影响生成结果的多样性
if τ == 1:
    noise = normal_distribution()  # 纯噪声
elif 0 < τ < 1:
    noise = apply_diffusion(z0, τ)  # 基于温度的噪声

experiment

patch size


  • 当补丁大小太大或太小时,性能会下降。过小的补丁会降低模型的双向注意力能力,迫使依赖因果注意力 AR 并降低性能。相反,过大的补丁会使 LocDiT 成为瓶颈,需要增加参数。
  • The Number of Historical Patches of LocDiT

temperature

较高的温度会产生略高的 SIM 分数,而较低的温度会产生更好的 WER 分数。根本原因可能是,模拟看不见的说话者的声音需要模型具有更大的多样性,而发音稳健性需要模型具有更多的确定性和稳定性。

相关推荐
饭饭大王6661 天前
迈向智能体时代——构建基于 `ops-transformer` 的可持续 AI 系统
人工智能·深度学习·transformer
晚霞的不甘1 天前
CANN 支持强化学习:从 Isaac Gym 仿真到机械臂真机控制
人工智能·神经网络·架构·开源·音视频
心疼你的一切1 天前
Unity异步编程神器:Unitask库深度解析(功能+实战案例+API全指南)
深度学习·unity·c#·游戏引擎·unitask
哈__1 天前
CANN加速Image-to-Image转换:风格迁移与图像编辑优化
人工智能·计算机视觉
ujainu1 天前
解码昇腾AI的“中枢神经”:CANN开源仓库全景式技术解析
人工智能·开源·cann
Elastic 中国社区官方博客1 天前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
组合缺一1 天前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp
哈__1 天前
CANN: AI 生态的异构计算核心,从架构到实战全解析
人工智能·架构
熊猫钓鱼>_>1 天前
移动端开发技术选型报告:三足鼎立时代的开发者指南(2026年2月)
android·人工智能·ios·app·鸿蒙·cpu·移动端