Python训练营---Day40

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

灰度图片:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1、数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])

# 2. 加载MNIST数据集
train_dataset=datasets.MNIST(
    root='./data',  
    train=True,  
    download=True, 
    transform=transform  
)

test_dataset=datasets.MNIST(
    root='./data',  
    train=False,  
    transform=transform  
)

# 3. 创建数据加载器
batch_size=64  # 每批处理64个样本
train_loader=DataLoader(
    train_dataset,
    batch_size=batch_size,
    shuffle=True    # 打乱数据顺序
)

test_loader=DataLoader(
    test_dataset,
    batch_size=batch_size,
    shuffle=False 
)

# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):
    def __init__(self):
        super(MLP,self).__init__()
        self.flatten=nn.Flatten()  # 将28x28的图像展平为784维向量
        self.layer1=nn.Linear(784,128)  # 第一层:784个输入,128个神经元
        self.relu=nn.ReLU()  # 激活函数
        self.layer2=nn.Linear(128,10)  # 第二层:128个输入,10个输出(对应10个数字类别)

    def forward(self,x):
        x=self.flatten(x)  # 展平图像
        x=self.layer1(x)   # 第一层线性变换
        x=self.relu(x)     # 应用ReLU激活函数
        x=self.layer2(x)   # 第二层线性变换,输出logits
        return x

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP().to(device)  # 将模型移至GPU(如果可用)
criterion=nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 5、训练模型
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置模型为训练模式

    # 新增:记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号(从1开始)

    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0

        for batch_idx, (data, target) in enumerate(train_loader):
            data,target=data.to(device),target.to(device)

            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播 outputs = model.forward(X_train),调用model类的__call__方法
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数

            # 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)
            iter_loss =loss.item()
            all_iter_losses.append(iter_loss)  # 记录损失
            iter_indices.append(batch_idx + 1 + epoch * len(train_loader))  # 记录 iteration 序号

            # 统计准确率和损失(原逻辑保留,用于 epoch 级统计)
            running_loss +=iter_loss
            _, predicted = output.max(1)  # 找到概率最大的类别
            total += target.size(0)  # 总样本数
            correct += predicted.eq(target).sum().item()  # 正确预测的样本数

            if(batch_idx+1)%100==0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 原 epoch 级逻辑(测试、打印 epoch 结果)不变
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    # # 保留原 epoch 级曲线(可选)
    # plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6、测试模型
def test(model,test_loader,criterion,device):
    model.eval()  # 设置模型为评估模式
    test_loss=0.0
    correct=0
    total=0

    with torch.no_grad():  # 不需要计算梯度
        for data,target in test_loader:
            data,target=data.to(device),target.to(device)
            output=model(data)
            test_loss+=criterion(output,target).item()  # 累加损失

            _,predicted=output.max(1)  # 找到概率最大的类别
            total+=target.size(0)  # 总样本数
            correct+=predicted.eq(target).sum().item()  # 正确预测的样本数

    avg_loss=test_loss/len(test_loader)  # 计算平均损失
    accuracy=100.*correct/total  # 计算准确率
    return avg_loss,accuracy

# 7、绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

彩色图片:

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),                # 转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./cifar_data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.CIFAR10(
    root='./cifar_data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量
        self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合
        self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(0.2)
        self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别
        
    def forward(self, x):
        # 第一步:将输入图像展平为一维向量
        x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]
        
        # 第一层全连接 + 激活 + Dropout
        x = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]
        x = self.relu1(x)    # 应用ReLU激活函数
        x = self.dropout1(x) # 训练时随机丢弃部分神经元输出
        
        # 第二层全连接 + 激活 + Dropout
        x = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]
        x = self.relu2(x)    # 应用ReLU激活函数
        x = self.dropout2(x) # 训练时随机丢弃部分神经元输出
        
        # 第三层(输出层)全连接
        x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]
        
        return x  # 返回未经过Softmax的logits

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

输入张量的形状通常为:(batch_size, channels, height, width)。其中,batch_size 代表一次输入的样本数量。

NLP任务中的张量形状:(batch_size, sequence_length),此时,batch_size同样是第一个维度。

相关推荐
qwetyunk6 分钟前
vr中风--数据处理模型搭建与训练
python·机器学习·vr
zdy126357468813 分钟前
Python打卡第38天
python
橙子小哥的代码世界21 分钟前
【大模型部署】mac m1本地部署 ChatGLM3-6B 超详细教程
深度学习·神经网络·macos·大模型·transformer·chatglm·踩坑记录
水银嘻嘻34 分钟前
02 APP 自动化-Appium 运行原理详解
python·appium·自动化
武子康1 小时前
大数据-274 Spark MLib - 基础介绍 机器学习算法 剪枝 后剪枝 ID3 C4.5 CART
大数据·人工智能·算法·机器学习·语言模型·spark-ml·剪枝
几道之旅2 小时前
python-pptx去除形状默认的阴影
开发语言·javascript·python
2301_778658802 小时前
【Python训练营打卡】day40 @浙大疏锦行
python
西京刀客2 小时前
python常用库-pandas、Hugging Face的datasets库(大模型之JSONL(JSON Lines))
python·json·数据集·pandas·模型训练·datasets
文莉wenliii3 小时前
打卡day41
人工智能·深度学习
Lilith的AI学习日记3 小时前
n8n 中文系列教程_25.在n8n中调用外部Python库
开发语言·人工智能·python·机器学习·chatgpt·ai编程·n8n