大模型-attention汇总解析之-MQA

MQA,即 "M ulti-Q uery Attention",是减少 KV Cache 的一次的一种大胆尝试,首次提出自《Fast Transformer Decoding: One Write-Head is All You Need》, 在2019 年减少 KV Cache 就已经是研究人员非常关注的一个课题了。MQA 的思路很简单,直接让所有 Attention Head 共享同一个 K、V。

论文中伪代码,

Todo : k , v 如何选择?实际上是多头共同使用一个k, v 缓存。

一般的multi head attention 的qkv的头的数量都一样,而multi query attention的q的头数量保持不变,k,v的头数量都变为1。

论文中的计算结果:

这样子就直接将 KV Cache 减少到了原来的1/h ,这是非常可观的, 已经简洁的不能再简洁了。使用 MQA 的模型包括 PaLM 、StarCoder、Gemini 等。

相关推荐
ASS-ASH13 小时前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
带刺的坐椅14 小时前
用 10 行 Java8 代码,开发一个自己的 ClaudeCodeCLI?你信吗?
java·ai·llm·agent·solon·mcp·claudecode·skills
aopstudio1 天前
OpenClaw 实测体验:Agent 框架现在到底能不能用?
人工智能·llm·agent·openclaw
千桐科技1 天前
qKnow 知识平台核心能力解析|第 03 期:结构化抽取能力全流程介绍
大模型·llm·知识图谱·知识库·rag·qknow·知识平台
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-02-04)
开源·大模型·llm·github·ai教程
gr17852 天前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
EdisonZhou2 天前
MAF快速入门(14)快速集成A2A Agent
llm·agent·.net core
gentle coder3 天前
【langchain】AI应用开发框架
langchain·llm·rag
doll ~CJ3 天前
Large Language Model(LLM)应用开发学习实践(三)
langchain·llm·提示词工程·ai应用
Rolei_zl3 天前
(AI生成) openClaw 的前世今生
llm·aigc