Kafka集成Flume/Spark/Flink(大数据)/SpringBoot

Kafka集成Flume

Flume生产者

③、安装Flume,上传apache-flume的压缩包.tar.gz到Linux系统的software,并解压到/opt/module目录下,并修改其名称为flume









Flume消费者





Kafka集成Spark







生产者



scala 复制代码
object SparkKafkaProducer{
	
	def main(args:Array[String]):Unit = {
		
		//配置信息
		val properties  = new Properties()
		properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092")
		properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
		properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
		
		//创建一个生产者
		var producer = new KafkaProducer[String,String](properties)

		//发送数据
		for(i <- 1 to 5){
			producer.send(new ProducerRecord[String,String]("first","atguigu"+i))
		}

		//关闭资源
		producer.close()
	}
}

消费者

scala 复制代码
Object SparkKafkaConsumer{
	
	def main(args:Array[String]):Unit = {
		
		//初始化上下文环境
		val conf = new SparkConf().setMaster("local[*]").setAppName("spark-kafka")
		
		val ssc = new StreamingContext(conf,Seconds(3))

		//消费数据
		val kafkapara = Map[String,Object](
			ConsumerConfig.BOOT_STRAP_SERVERS_CONFIG->"hadoop102:9092,hadoop103:9092",
			ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
			ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
			ConsumerConfig.GROUP_ID_CONFIG->"test"
		)
		val kafkaDStream = KafkaUtils.createDirectStream(ssc,LocationStrategies.PreFerConsistent
										,ConsumerStrategies.Subscribe[String,String](Set("first"),kafkapara))

		val valueDStream = kafkaDStream.map(record=>record.value())
		valueDStream.print()
		//执行代码,并阻塞
		ssc.start()
		ssc.awaitTermination()
	}
}

创建maven项目,导入以下依赖

resources里面添加log4j.properties文件,可以更改打印日志的级别为error

Flink生产者

java 复制代码
public class FlinkafkaProducer1{
	
	public static void main(String[] args){
		
		//获取环境
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		
		env.setParallelism(3);

		//准备数据源
		ArrayList<String> wordList = new ArrayList<>();
		wordList.add("hello");
		wordList.add("atguigu");
		DataStreamSource<String> stream = env.fromCollection();

		//创建一个kafka生产者
		Properties properteis = new Properties();
		properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
		
		FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("first",new SimpleStringSchema(),properties);

		//添加数据源Kafka生产者
		stream.addSink(kafkaProducer);

		//执行
		env.execute();
	}
}

Flink消费者

java 复制代码
public class FlinkafkaConsumer1{
	
	public static void main(String[] args){
		
		//获取环境
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setParallelism(3);
		
		//创建一个消费者
		Properties properties = new Properties();
		properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
		properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");

		FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("first",new SimpleSStringSchema(),properties);

		//关联消费者和flink流
		env.addSource(kafkaConsumer).print();
		
		//执行
		env.execute();
	}
}

Kafka集成SpringBoot


生产者

通过浏览器发送

消费者

相关推荐
Acrelhuang1 分钟前
小小电能表,如何撬动家庭能源革命?
java·大数据·开发语言·人工智能·物联网
叶子2024227 分钟前
判断题:可再生能源发电利用率指水电、风电、太阳能、生物质能等非化石能源占一次能源消费总量的比重。 这句话为什么错误
大数据·人工智能·能源
lpfasd12340 分钟前
GEO崛起与AI信任危机:数据源安全如何守护智能时代的基石?
大数据·人工智能·安全
swanwei1 小时前
AI与电力的深度绑定:算力与能源分配的趋势分析
大数据·人工智能
yumgpkpm2 小时前
CMP(类Cloudera CDP 7.3 404版华为泰山Kunpeng)和Apache Doris的对比
大数据·hive·hadoop·spark·apache·hbase·cloudera
呆呆小金人9 小时前
SQL字段对齐:性能优化与数据准确的关键
大数据·数据仓库·sql·数据库开发·etl·etl工程师
编啊编程啊程10 小时前
【029】智能停车计费系统
java·数据库·spring boot·spring·spring cloud·kafka
zskj_zhyl11 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
苗壮.13 小时前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者13 小时前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink