Kafka集成Flume/Spark/Flink(大数据)/SpringBoot

Kafka集成Flume

Flume生产者

③、安装Flume,上传apache-flume的压缩包.tar.gz到Linux系统的software,并解压到/opt/module目录下,并修改其名称为flume









Flume消费者





Kafka集成Spark







生产者



scala 复制代码
object SparkKafkaProducer{
	
	def main(args:Array[String]):Unit = {
		
		//配置信息
		val properties  = new Properties()
		properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092")
		properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
		properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
		
		//创建一个生产者
		var producer = new KafkaProducer[String,String](properties)

		//发送数据
		for(i <- 1 to 5){
			producer.send(new ProducerRecord[String,String]("first","atguigu"+i))
		}

		//关闭资源
		producer.close()
	}
}

消费者

scala 复制代码
Object SparkKafkaConsumer{
	
	def main(args:Array[String]):Unit = {
		
		//初始化上下文环境
		val conf = new SparkConf().setMaster("local[*]").setAppName("spark-kafka")
		
		val ssc = new StreamingContext(conf,Seconds(3))

		//消费数据
		val kafkapara = Map[String,Object](
			ConsumerConfig.BOOT_STRAP_SERVERS_CONFIG->"hadoop102:9092,hadoop103:9092",
			ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
			ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
			ConsumerConfig.GROUP_ID_CONFIG->"test"
		)
		val kafkaDStream = KafkaUtils.createDirectStream(ssc,LocationStrategies.PreFerConsistent
										,ConsumerStrategies.Subscribe[String,String](Set("first"),kafkapara))

		val valueDStream = kafkaDStream.map(record=>record.value())
		valueDStream.print()
		//执行代码,并阻塞
		ssc.start()
		ssc.awaitTermination()
	}
}

创建maven项目,导入以下依赖

resources里面添加log4j.properties文件,可以更改打印日志的级别为error

Flink生产者

java 复制代码
public class FlinkafkaProducer1{
	
	public static void main(String[] args){
		
		//获取环境
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		
		env.setParallelism(3);

		//准备数据源
		ArrayList<String> wordList = new ArrayList<>();
		wordList.add("hello");
		wordList.add("atguigu");
		DataStreamSource<String> stream = env.fromCollection();

		//创建一个kafka生产者
		Properties properteis = new Properties();
		properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
		
		FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("first",new SimpleStringSchema(),properties);

		//添加数据源Kafka生产者
		stream.addSink(kafkaProducer);

		//执行
		env.execute();
	}
}

Flink消费者

java 复制代码
public class FlinkafkaConsumer1{
	
	public static void main(String[] args){
		
		//获取环境
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setParallelism(3);
		
		//创建一个消费者
		Properties properties = new Properties();
		properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
		properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");

		FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("first",new SimpleSStringSchema(),properties);

		//关联消费者和flink流
		env.addSource(kafkaConsumer).print();
		
		//执行
		env.execute();
	}
}

Kafka集成SpringBoot


生产者

通过浏览器发送

消费者

相关推荐
Jabes.yang19 小时前
Java面试大作战:从缓存技术到音视频场景的探讨
java·spring boot·redis·缓存·kafka·spring security·oauth2
望获linux20 小时前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
励志成为糕手21 小时前
宽依赖的代价:Spark 与 MapReduce Shuffle 的数据重分布对比
大数据·spark·mapreduce·分布式计算·sortshuffle
Elastic 中国社区官方博客1 天前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
点控云1 天前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
风清再凯1 天前
04_es原理&filebeat使用
大数据·elasticsearch·搜索引擎
小小王app小程序开发1 天前
盲盒小程序开发新视角:从用户体验到运营落地的分析拆解
大数据·ux
weixin_525936331 天前
部分Spark SQL编程要点
大数据·python·sql·spark
Mr_wilson_liu1 天前
往kafka创建生产者和消费者,并且打数据和消费数据
kafka
wan5555cn1 天前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活