深度学习pycharm debug

深度学习中,Debug 是定位并解决代码逻辑错误(如张量维度不匹配)、训练异常(如 Loss 波动)、数据问题(如标签错误)的关键手段,通过打印维度、可视化梯度等方法确保模型正常运行、优化性能,贯穿开发全流程。

直接上实例以经典错误shape报错为例:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 模拟图像数据
x = torch.randn(8, 3, 64, 64)  # [B, C, H, W],batch size = 8

# 模拟标签(分类任务)
labels = torch.randint(0, 5, (8,))  # 5 类问题,标签是 [8]

# 模型定义
class BuggyNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.pool = nn.AdaptiveAvgPool2d((4, 4))  # 变成 [B, 32, 4, 4]
        self.linear = nn.Linear(32, 5)  # ❌ 故意设置错误 in_features

    def forward(self, x):
        x = F.relu(self.conv1(x))        # [B, 16, 64, 64]
        x = F.relu(self.conv2(x))        # [B, 32, 64, 64]
        x = self.pool(x)                 # [B, 32, 4, 4]
        x = self.linear(x)               # ❌ 错误! x 是 4D,Linear 接受 2D 或 3D
        return x

model = BuggyNet()
criterion = nn.CrossEntropyLoss()

# 前向传播
outputs = model(x)                  # 会报错
loss = criterion(outputs, labels)  # 不会执行到这里

首先设置断点:

然后进行debug右击:

然后会出现控制台:

会出现变量和变量的信息(shape,值):

然后我们进行单步:

然后变量开始变化,当单步到24行时:

此刻x的shape是(8,32,4,4)但是在这个linear层

复制代码
self.linear = nn.Linear(32, 5)  # ❌ 故意设置错误 in_features

期望输入是32,不仅维度不相同channel也不相同,所以继续单步会报错:

RuntimeError: mat1 and mat2 shapes cannot be multiplied (1024x4 and 32x5)

然后我们根据错误进行操作将x展平并且修改linear的输入:

x = x.view(x.size(0), -1) # [8, 32*4*4] = [8, 512]

self.linear = nn.Linear(512, 5) # ✅ 修复后的定义

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 模拟图像数据
x = torch.randn(8, 3, 64, 64)  # [B, C, H, W],batch size = 8

# 模拟标签(分类任务)
labels = torch.randint(0, 5, (8,))  # 5 类问题,标签是 [8]

# 模型定义
class BuggyNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.pool = nn.AdaptiveAvgPool2d((4, 4))  # 变成 [B, 32, 4, 4]
        self.linear = nn.Linear(512, 5)  # 此处修改

    def forward(self, x):
        x = F.relu(self.conv1(x))        # [B, 16, 64, 64]
        x = F.relu(self.conv2(x))        # [B, 32, 64, 64]
        x = self.pool(x)                 # [B, 32, 4, 4]
        x = x.view(x.size(0), -1)        # 此处修改
        x = self.linear(x)               
        return x

model = BuggyNet()
criterion = nn.CrossEntropyLoss()

# 前向传播
outputs = model(x)                  
loss = criterion(outputs, labels)  

然后我们这样就不会报错了。

很多时候缝合模块时就是经常遇见shape问题,耐性一点关注输入输出shape这样就可以轻松解决问题。

相关推荐
嘀咕博客11 分钟前
月匣 - 百度推出的AI情感陪伴与剧情互动应用
人工智能·百度·ai工具
新加坡内哥谈技术25 分钟前
Claude Code 的“AI优先”
人工智能
豆芽81929 分钟前
模糊控制Fuzzy Control
人工智能·算法·模糊控制
Sui_Network37 分钟前
Sui Stack Messaging SDK:为 Web3 打造可编程通信
大数据·人工智能·科技·web3·去中心化·区块链
金井PRATHAMA41 分钟前
GraphRAG对自然语言处理中深层语义分析的革命性影响与未来启示
人工智能·自然语言处理·知识图谱
人工智能培训42 分钟前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision
丰年稻香1 小时前
神经网络二分类任务详解:前向传播与反向传播的数学计算
人工智能·神经网络·分类
Lethehong1 小时前
DeepSeek-V3.1-Terminus:蓝耘API+CherryStudio实测国产最新开源模型,推理能力竟让我后背发凉
人工智能·大模型·deepseek·蓝耘元生代·蓝耘maas·ai ping
咖啡星人k1 小时前
AI 大模型驱动的开源知识库搭建系统 PandaWiki的网页挂件机器人教程
人工智能·机器人·开源
QYR_111 小时前
机器人定位器市场报告:2025-2031 年行业增长逻辑与投资机遇解析
大数据·人工智能