Milvus单机模式安装和试用

1.安装ollama的package包;

复制代码
# install package
pip install -U langchain-ollama

2.我们直接使用ChatOllama实例化模型,并通过invoke进行调用;

复制代码
from langchain_ollama import ChatOllama

llm = ChatOllama(model="deepseek-r1")
messages = [
    ("system", "你是一个很有用的翻译助手,请将以下句子翻译成英语。"),
    ("human", "我爱编程。")
]
message = llm.invoke(messages)
print(message.content)

3.通过流式方式调用大模型;

复制代码
from langchain_ollama import ChatOllama

msgs = [
    ("human", "LLM是什么?")
]
llm = ChatOllama(model="deepseek-r1")
for chunk in llm.stream(msgs):
    print(chunk.content, end='')

4.我们可以直接使用chain链接prompt和llm进行调用;

复制代码
from langchain_ollama.chat_models import ChatOllama
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "你是一个很有帮助的翻译助手,请将用户的输入从{input_language}成{output_language}"
        ),
        (
            "human",
            "{input}"
        )
    ]
)

llm = ChatOllama(model="deepseek-r1")
chain = prompt | llm
msg = chain.invoke(
    {
        "input_language":"中文",
        "output_language":"英文",
        "input":"我爱编程。"
    }
)
print(msg.content)

5.通过tool标记函数,并使用bind_tools来绑定函数,来实现tools的调用;

复制代码
from typing import List

from langchain_ollama import ChatOllama
from langchain_core.tools import tool

    # """校验用户的历史住址.

    # Args:
    #     user_id (int): 用户的id.
    #     addresses (List[str]): 以前居住的地址列表.
    # """

@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
    """Validate user using historical addresses.

    Args:
        user_id (int): the user ID.
        addresses (List[str]): Previous addresses as a list of strings.
    """

    return True

llm = ChatOllama(model="qwen3:0.6b").bind_tools([validate_user])
result = llm.invoke(
    "请校验一下用户123,他以前在"
    "河南省郑州市和"
    "北京市西城区住过"
)
print(result.tool_calls)
相关推荐
roshy1 天前
MCP(模型上下文协议)入门教程1
人工智能·大模型·agent
大千AI助手1 天前
VeRL:强化学习与大模型训练的高效融合框架
人工智能·深度学习·神经网络·llm·强化学习·verl·字节跳动seed
胡耀超1 天前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
SEO_juper2 天前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
堆栈future2 天前
我的个人网站上线了,AI再一次让我站起来了
程序员·llm·aigc
大模型教程2 天前
AI Agent 发展趋势与架构演进
程序员·llm·agent
大熊猫侯佩2 天前
冰火岛 Tech 传:Apple Foundation Models 心法解密(上集)
llm·ai编程·swift
AI大模型2 天前
无所不能的Embedding(01) - 词向量三巨头之Word2vec模型详解&代码实现
程序员·llm·agent
AI大模型2 天前
基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程
docker·llm·deepseek
大熊猫侯佩2 天前
冰火岛 Tech 传:Apple Foundation Models 心法解密(下集)
llm·ai编程·apple