对抗性提示:大型语言模型的安全性测试

随着大语言模型(LLM)在虚拟助手、企业平台等现实场景中的深度应用,其智能化与响应速度不断提升。然而能力增长的同时,风险也在加剧。对抗性提示已成为AI安全领域的核心挑战,它揭示了即使最先进的模型也可能被操纵生成有害、偏见或违规内容。

这项由Appen开展的原创研究引入了一套新颖的评估数据集,并对主流开源与闭源模型在多类危害场景中的表现进行基准测试。结果显示,攻击者通过虚拟情境构建、规避话术、提示注入等技术利用模型弱点,同时暴露出显著的安全性能差距------即便是那些具备顶尖算力规模的模型也未能幸免。

什么是对抗性提示(Adversarial Prompting)?

对抗性提示指通过精心设计的输入绕过LLM安全机制,诱导模型产生不安全或违反策略的输出。这类输入往往依赖语言技巧而非直接违规,使得常规审核工具难以识别。关键技术包括:

  • 虚拟情境:将有害内容嵌套于虚构或假设性场景
  • 规避话术:使用模糊/间接表达绕过关键词过滤器
  • 提示注入:通过嵌入指令覆盖原始模型设定
  • 说服与持续施压:利用角色扮演、逻辑/权威诉求及反复改写瓦解模型的拒绝机制

理解这些技术对评估模型鲁棒性及开发安全可信的AI系统至关重要。

研究价值何在?

本研究首次系统性评估了LLM在对抗压力下的安全表现,揭示了模型间的实质性差异:

  • 相同测试条件下,不同模型的安全输出差异显著
  • 提示技巧与身份相关内容会极大影响模型行为
  • 系统提示词、审核层等部署阶段因素对安全性起决定性作用

随着LLM越来越多地应用于关键领域,洞悉其脆弱点是负责任AI开发的核心。本论文不仅提供了当前安全措施有效性的实践洞察,更为应对新兴威胁提出了解决方案。

您将了解到:

  • 对抗性提示如何暴露LLM漏洞
  • 虚拟情境/规避话术等技术的危害诱导效力
  • 身份相关提示对安全结果的影响机制
  • 安全对齐训练数据对构建稳健LLM的决定性作用
  • 企业提升LLM安全性的实践方案
相关推荐
糖葫芦君30 分钟前
玻尔兹曼分布与玻尔兹曼探索
人工智能·算法·机器学习
TT-Kun33 分钟前
PyTorch基础——张量计算
人工智能·pytorch·python
Monkey-旭4 小时前
Android Bitmap 完全指南:从基础到高级优化
android·java·人工智能·计算机视觉·kotlin·位图·bitmap
哪 吒5 小时前
OpenAI放大招:ChatGPT学习模式上线,免费AI智能家教
人工智能·学习·ai·chatgpt·gemini·deepseek
老鱼说AI6 小时前
循环神经网络RNN原理精讲,详细举例!
人工智能·rnn·深度学习·神经网络·自然语言处理·语音识别
lingling0096 小时前
颐顿机电携手观远BI数据:以数据驱动决策,领跑先进制造智能化升级
大数据·人工智能·制造
b***25116 小时前
电池自动生产线:科技赋能下的高效制造新范式
大数据·人工智能
EVERSPIN6 小时前
分享低功耗单火线开关语音识别方案
人工智能·语音识别
说私域6 小时前
从渠道渗透到圈层渗透:开源链动2+1模式、AI智能名片与S2B2C商城小程序的协同创新路径研究
人工智能·小程序·开源
黎燃7 小时前
人工智能在语言学习中的实践:从 Duolingo 到自研系统的深度剖析
人工智能