8K样本在DeepSeek-R1-7B模型上的复现效果

7B Model and 8K Examples: Emerging Reasoning with Reinforcement Learning is Both Effective and Effic (notion.site)

港科大助理教授何俊贤的团队以Qwen2.5-Math-7B(基础模型)为起点,直接对其进行强化学习。整个过程中,没有进行监督微调(SFT),也没有使用奖励模型。最终,模型在AIME基准上实现了33.3%的准确率,在AMC上为62.5%,在MATH上为77.2%。这一表现超越了Qwen2.5-Math-7B-Instruct,且可以和使用超过50倍数据量和更复杂组件的PRIME和rStar-MATH相媲美。结果说明,模型在复杂的数学推理上取得了十分优秀的结果。

Qwen2.5- 7 B-SimpleRL-Zero是直接从基础模型进行简单的RL训练,仅使用8K MATH示例。与基础模型相比,它平均获得了近20个绝对点的收益。与具有相同8K数据SFT的Qwen2.5-Math-7 B-Base相比,RL具有更好的泛化能力,绝对高出22%。此外,Qwen2.5- 7 B-SimpleRL-Zero的平均性能优于Qwen-2.5-Math-7 B-Instruct,并且与最近发布的Eurus-2- 7 B-PRIME和rStar-Math-7 B大致相当,后者也基于Qwen-2.5-Math-7 B。

其中,Qwen2.5-7B-SimpleRL-Zero是在Qwen2.5-Math-7B基础模型上仅使用纯PPO方法训练的,仅采用了MATH数据集中的8K样本。Qwen2.5-7B-SimpleRL则首先通过Long CoT监督微调(SFT)作为冷启动,然后再进行强化学习。在这两种方法中,团队都只使用了相同的8K MATH样本。

大概在第40步的时候,模型开始生成自反射模式,即DeepSeek-R1论文中的"aha moment"。模型的响应中,出现了自我反思。

在验证中,模型还显现了较长的CoT推理能力和自我反思能力。

有趣的是,尽管研究者先进行了long CoT SFT,但在强化学习初期仍然观察到输出长度减少的现象。他们推测,这可能是因为从QwQ提取的推理模式不适合小型策略模型,或超出了其能力范围。因此,模型选择放弃这种模式,转而自主发展新的长链式推理方式。

相关推荐
琅琊榜首20201 分钟前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid41 分钟前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
Cemtery1161 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
zxsz_com_cn1 小时前
预测性维护在智能制造设备上的实际应用
人工智能
一条闲鱼_mytube1 小时前
智能体设计模式(三)多智能体协作-记忆管理-学习与适应
人工智能·学习·设计模式
scott1985122 小时前
opencv 畸变系数的说明
人工智能·数码相机·opencv
LS_learner2 小时前
Transmormer从零基础到精通
人工智能
ASD123asfadxv2 小时前
【蜂巢健康监测】基于YOLO的蜂群病虫害识别系统
人工智能·yolo·目标跟踪
说私域2 小时前
基于AI智能名片链动2+1模式服务预约商城系统的社群运营与顾客二次消费吸引策略研究
大数据·人工智能·小程序·开源·流量运营
丝斯20113 小时前
AI学习笔记整理(50)——大模型中的Graph RAG
人工智能·笔记·学习