#TraeAgent # AI编程 一个可以在单次对话中持续与用户保持沟通的Agent

我用Trae 做了一个有意思的Agent 「Echo」。 点击 s.trae.ai/a/94dd3d 立即复刻,一起来玩吧!

需求发送给AI编辑器后,AI持续生成代码,尤其是对于大型项目,可能会因为中间方案细节与用户预期不符导致的一步步错误累计,最终效果相差甚远。开发部署了一个MCP工具,可以在Trae、VScode等AI编辑器中引入,通过prompt引入Agent持续沟通的工作范式。

最终效果:

示例为开发一个IP摄像头,中间开发过程可选组件方案众多,无介入持续控制过多次无法成功实现。

解决的问题:

  1. 复杂项目中中间组件,方案选择先与用户确认。
  2. 编译过程中AI日志、上下文召回的局限性可能导致很难或者需要很多次尝试才找到问题。
  3. 通过开发者对问题的准确提炼,提供高信噪比上下文可大大节省AI重复次数,冗余代码引入。
  4. 在很多项目的开发过程中,很难让AI通过自动化去得到运行效果(大数据计算、远端运行等),需要开发者介入提供运行效果反馈。
  5. 各种AI编辑器即使订阅用户请求次数也有限,通过此Agent不需要停止当此运行,节省请求资源。
  6. 通过持续的反馈大大减少AI无效的尝试,减少AI生成资源。

如何解决:

开发了可以本地弹窗跟用户对话的对话框并符合MCP协议------github.com/whyuds/Codi... 可以在Trae、Cursor、VScode等通过以下配置引入,并本地化运行。

json 复制代码
{
  "mcpServers": {
    "CodingConverse": {
      "command": "python",
      "args": ["-m","coding_converse"],
      "env": {
        "PYTHONIOENCODING": "utf-8",
        "LANG": "zh_CN.UTF-8"
      }
    }
  }
}

演示开发的APP效果:

总结

Echo Agent是一个为AI编辑器设计的交互增强工具,解决了AI代码生成过程中缺乏持续反馈导致的方案偏离问题。是未来AI编程必要的开发范式之一。

相关推荐
吏部侍郎3 小时前
当产品经理开始AI编程(二):从一次失败的重构中领悟的AI协作之道
ai编程·trae
运器1236 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程
我爱一条柴ya7 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
6confim7 小时前
AI原生软件工程师
人工智能·ai编程·cursor
阑梦清川8 小时前
claude code-- 基于Claude 4 模型的智能编程工具,重塑你的编程体验
ai编程·claude·claude code
阿星AI工作室10 小时前
AI产品经理必看的大模型微调劝退指南丨实战笔记
人工智能·产品经理·ai编程
qiyue7710 小时前
AI编程专栏(四) - 提示词技术,如何写编程提示词
前端·ai编程
droidHZ11 小时前
第一次赚美元!纯新手深度复盘网站出海,一文掌握全流程
前端·ai编程·next.js
cpp加油站11 小时前
Trae近期上新功能速览,国内版支持图片上传,新增进程资源管理器功能
ai编程·trae
cpp加油站11 小时前
我用Trae写了一个utools插件-灵感捕手,帮你捕捉转瞬即逝的灵感
ai编程·trae