高效复用 Cursor 请求,提升开发效率 —— 使用 interactive-feedback-mcp 工具详解


项目地址:GitHub - noopstudios/interactive-feedback-mcp: Interactive User Feedback MCP 推荐星标收藏,一劳永逸优化 Cursor 的使用体验!


在日常使用 AI 编程助手(如 Cursor)的过程中,开发者常常需要进行"多轮追问"。比如:

  • "再优化一下刚刚那段逻辑"

  • "再加个参数校验"

  • "改成异步试试"

但 Cursor 默认会每次请求都重建上下文,这不仅会浪费 Token,还会导致上下文理解缺失、语义割裂。

👇 这时你就需要这个神器:

🧰 interactive-feedback-mcp ------ 为 Cursor 打造的请求复用中间层


🔧 工具简介

interactive-feedback-mcp 是一个专为 Cursor 用户设计的轻量 MCP(Model Context Protocol)服务工具,它的主要目标是:

  • 实现多轮上下文连续请求复用

  • 节省调用次数,保持对话语义一致性

  • 自动拦截每轮交互,持续追问也不卡壳


🧪 工作原理

复制代码
用户提问 → Cursor 回复 → MCP 拦截响应
   ↓
用户继续追问 → MCP 注入新请求 + 上下文
   ↓
再次发送给 Cursor(复用当前 Session)

通过 MCP 工具,每一次追问都"接上"了上次内容,像极了真正的"多轮对话线程"。


🎯 使用场景效果

✅ 避免 Cursor 每次重建请求上下文 ✅ 保持 AI 状态持续,适用于:

  • 问题深入调试

  • 代码多轮迭代

  • 长逻辑持续优化

尤其推荐配合 Cursor 的 Edit 模式使用!


🧰 快速使用教程(全流程)

✅ Step 1:准备环境

先决条件:

安装方式:

复制代码
# Windows 下
pip install uv

# macOS / Linux 下
curl -LsSf https://astral.sh/uv/install.sh | sh

✅ Step 2:获取项目代码

复制代码
git clone https://github.com/noopstudios/interactive-feedback-mcp.git
cd interactive-feedback-mcp

✅ Step 3:安装依赖

复制代码
uv sync

这将创建一个虚拟环境并安装所有依赖项。


✅ Step 4:运行 MCP 服务器

复制代码
uv run server.py

如果看到 ✅ Server running on http://localhost:...,表示已启动成功。


⚙️ Cursor 内部配置 MCP

打开 .cursor-config.json 文件,添加如下配置项:

复制代码
{
  "mcpServers": {
    "interactive-feedback-mcp": {
      "command": "uv",
      "args": [
        "--directory",
        "/你的路径/interactive-feedback-mcp",
        "run",
        "server.py"
      ],
      "timeout": 600,
      "autoApprove": ["interactive_feedback"]
    }
  }
}

✅ 请将 /你的路径/... 替换为你本地实际项目路径。


✏️ 设置 MCP 的提示词(defaultPrompt)

提示词建议设置在 MCP 初始化阶段,定义 AI 的交互行为风格。

示例推荐提示词:

复制代码
你是一个智能代码助手。我将分多轮描述需求,请你持续保留上下文并进行逻辑分析和代码输出。在每轮回答完成后,请调用 interactive-feedback-mcp 工具,而不是结束流程。

可通过 defaultPrompt 注入方式进行配置,也可结合 Cursor 中的 "Command Prompt Injection" 实现。


🧠 使用效果演示

  1. 打开 Cursor

  2. 提问:"帮我写个订单支付逻辑"

  3. Cursor 回答后你再提问:"再加一个金额校验"

  4. MCP 工具拦截并接续上下文,再次发给 Cursor

  5. 逻辑串联通顺、调用节省、效果提升!


🏆 工具优势总结

优势 描述
🚀 节省请求 每次多轮追问不重建上下文
🧠 语义连续 逻辑思路不断链,更自然
🧩 插件友好 尤其适合 AI 编辑器协同工作
🛠️ 易于集成 支持本地部署 + uv 依赖管理

✅ 结语

如果你正在频繁使用 Cursor,又对调用次数、上下文丢失等问题感到困扰,不妨试试 interactive-feedback-mcp。它能为你的 AI 编程体验,带来一次质的提升。

📌 项目地址(推荐收藏): 👉 GitHub - noopstudios/interactive-feedback-mcp: Interactive User Feedback MCP


欢迎点赞 + 收藏 + 转发,更多 AI 编程工具介绍,欢迎持续关注我! 有问题可以评论区留言,我会逐一回复 😊


欢迎关注AI飞书社区:Cursor无限续杯获取更多cursor无线续杯教程

相关推荐
☼←安于亥时→❦3 小时前
PyTorch 梯度与微积分
人工智能·pytorch·python
mahuifa4 小时前
OpenCV 开发 -- 图像阈值处理
人工智能·opencv·计算机视觉
闲人编程4 小时前
图像去雾算法:从物理模型到深度学习实现
图像处理·人工智能·python·深度学习·算法·计算机视觉·去雾
咔咔学姐kk4 小时前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
Caaacy_YU4 小时前
多模态大模型研究每日简报【2025-09-10】
论文阅读·人工智能·深度学习·机器学习·计算机视觉
云边云科技5 小时前
门店网络重构:告别“打补丁”,用“云网融合”重塑数字竞争力!
大数据·人工智能·安全·智能路由器·零售
山海青风5 小时前
12 Prompt 模板化与参数化
人工智能·prompt
山海青风5 小时前
11 Prompt 工程进阶:Few-shot 与 Chain-of-Thought
人工智能·prompt
爱看科技5 小时前
AI/AR智能眼镜步入全球破圈增长期,五大科技大厂入局加剧生态市场角逐
人工智能·科技·ar
人有一心5 小时前
深度学习里的树模型TabNet
人工智能·深度学习