MCP生产部署实战:从开发到上线的完整指南

1. 客户端配置详解

1.1 mcp.json 标准格式

json 复制代码
{
  "version": "1.0",
  "mcpServers": {
    "my_ai_tools": {
      "command": "python",
      "args": ["/path/to/server.py"],
      "env": {
        "OPENAI_API_KEY": "sk-xxx",
        "DB_URL": "mysql://user:pass@localhost/db"
      },
      "description": "AI工具集(数据库/天气API)"
    }
  }
}

关键字段说明

  • command:启动命令(如pythonuvicorn等)
  • args:命令行参数(支持相对路径)
  • env:环境变量(敏感信息建议通过外部注入)
  • description:客户端展示的服务描述

1.2 配置位置

  • 全局配置~/.config/mcp/config.json
  • 项目级配置./.mcp/mcp.json
  • IDE特定配置 :如Cursor会在工作区查找.vscode/mcp.json

1.3 环境变量管理

bash 复制代码
# 推荐使用.env文件(需配合python-dotenv)
echo "DB_PASSWORD=123456" > .env

然后在代码中加载:

python 复制代码
from dotenv import load_dotenv
load_dotenv()

2. 部署模式对比

2.1 STDIO模式(开发环境首选)

json 复制代码
{
  "command": "python",
  "args": ["server.py"]
}
  • 优点
    • 零延迟通信
    • 调试方便(日志直接输出)
  • 限制
    • 必须与客户端同机部署
    • 无跨进程隔离

2.2 SSE模式(生产环境必选)

json 复制代码
{
  "command": "uvicorn",
  "args": ["server:app", "--port", "8000"]
}

需要FastAPI封装:

python 复制代码
# server.py
from fastapi import FastAPI
from fastmcp import FastMCP

app = FastAPI()
mcp = FastMCP("ProductionTools")

@app.post("/mcp")
async def handle_mcp():
    return await mcp.handle_request()

# 注册工具...

3. 生产环境部署实战

3.1 使用Gunicorn+Uvicorn

bash 复制代码
gunicorn -w 4 -k uvicorn.workers.UvicornWorker server:app

对应mcp.json

json 复制代码
{
  "command": "curl",
  "args": ["http://localhost:8000/mcp"]
}

3.2 容器化部署(Docker)

dockerfile 复制代码
FROM python:3.10
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
CMD ["gunicorn", "-w", "4", "-k", "uvicorn.workers.UvicornWorker", "server:app"]

3.3 健康检查配置

python 复制代码
@app.get("/health")
def health_check():
    return {"status": "ok"}

4. 安全加固方案

4.1 认证鉴权

python 复制代码
from fastapi.security import HTTPBearer
security = HTTPBearer()

@app.post("/mcp")
async def handle_mcp(token: str = Depends(security)):
    if token != os.getenv("API_TOKEN"):
        raise HTTPException(status_code=403)
    return await mcp.handle_request()

4.2 限流保护

python 复制代码
from fastapi.middleware import Middleware
from slowapi import Limiter
from slowapi.util import get_remote_address

limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

@app.post("/mcp")
@limiter.limit("10/minute")
async def handle_mcp():
    return await mcp.handle_request()

5. 监控与日志

5.1 Prometheus监控

python 复制代码
from prometheus_fastapi_instrumentator import Instrumentator
Instrumentator().instrument(app).expose(app)

5.2 结构化日志

python 复制代码
import logging
import json_logging

json_logging.init_fastapi(enable_json=True)
logger = logging.getLogger("mcp-server")

附录:部署检查清单

  1. 测试STDIO和SSE两种模式
  2. 配置环境变量加密方案
  3. 设置健康检查端点
  4. 实现基础认证鉴权
  5. 配置日志和监控系统
  6. 压力测试(推荐使用locust)
相关推荐
田井中律.5 分钟前
MCP协议
mcp
通义灵码10 小时前
Qoder 支持通过 DeepLink 添加 MCP Server
人工智能·github·mcp
CoderJia程序员甲19 小时前
GitHub 热榜项目 - 日榜(2026-1-9)
开源·大模型·llm·github·ai教程
树獭非懒20 小时前
AI大模型小白手册|如何像工程师一样写Prompt?
llm·aigc·ai编程
视觉&物联智能1 天前
【杂谈】-多智能体系统的效能悖论:协作优势的认知边界
ai·llm·agent·智能体·人工 智能
AI架构师易筋1 天前
多模态 LLM 与本地多模态检索 PoC:从原理到工程落地(图片 / 视频关键帧 / LaTeX 公式)
人工智能·llm·多模态·多模态llm
酩酊仙人2 天前
fastmcp构建mcp server和client
python·ai·mcp
且去填词2 天前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
EdisonZhou2 天前
MAF快速入门(11)并行工作流
llm·aigc·agent·.net core
进击的松鼠2 天前
LangChain 实战 | 快速搭建 Python 开发环境
python·langchain·llm